PhysProf - Kondensatoren - Laden - Entladen - Elektrische Entladung
Fachthema: Ladung und Entladung von Kondensatoren
PhysProf - Grundlagen der Elektrotechnik - Ein Programm zur Präsentation physikalischer Sachverhalte mittels Simulationen und 2D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure und alle die sich für Physik interessieren.
Online-Hilfe für das Modul
zur Analyse und grafischen Darstellung der Vorgänge, die beim Laden oder Entladen von Kondensatoren auftreten.
Dieses Teilprogramm ermöglicht die Durchführung interaktiver Analysen zu diesem Fachthema und eine Untersuchung der entsprechenden physikalischen Sachverhalte und eignet sich zudem als ergänzendes Unterrichtsmaterial zum Physikunterricht.
Es unterstützt dabei ein tiefergehendes Verständnis zu diesem Themengebiet zu erlangen und kann zum Lösen vieler diesbezüglich relevanter Aufgaben eingesetzt werden.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul: |
Kondensator - Ladung und Entladung
Das Unterprogramm [Elektrotechnik] - [Kondensator Ladung - Entladung] ermöglicht es, die Vorgänge, welche beim Laden und Entladen des Kondensators vorherrschen, zu analysieren.
Modul Ladung und Entladung eines Kondensators
Kondensatoren sind elektrische Bauelemente, welche prinzipiell aus zwei voneinander isolierten, leitenden Flächen bestehen. Isolatoren bestehen hierbei größtenteils aus Kunststoffen oder Gasgemischen. Ihre Flächen besitzen einen bestimmten Abstand zueinander. Die Kapazität eines Kondensators hängt von der Distanz dieser ab und zudem beeinflusst sie die Größe ihrer Fläche sowie das Material aus dem sie gefertigt wurden.
Die elektrische Ladung Q ist das Produkt aus Stromstärke und Zeit. Ihre SI-Einheit ist das Coulomb (C). Für sie gilt:
Q = It
Q: Elektrische Ladung [C]
I: Stromstärke [A]
t: Zeit [s]
Als elektrische Elementarladung wird die kleinste elektrische Ladung bezeichnet die Elementarteilchen (Protonen und Elektronen) besitzen können. Sie besitzt den Wert:
e = 1,60217733·10-19 C
Jede elektrische Ladung ist ein ganzzahliges Vielfaches dieser.
Elektrische Ladung kann nicht durch einen Kondensator fließen, wird er jedoch an eine Spannungsquelle abgeschlossen, so fließt dennoch solange Strom, bis die elektrisch aufgeladenen Platten des Kondensators keine weitere Ladung mehr aufnehmen können. Dies tritt ein, wenn die Kondensatorspannung Uc genauso groß ist wie die angelegte Spannung U0. Eine der Platten wird positiv, die andere negativ geladen.
Das Fassungsvermögen eines derartigen Ladungsspeichers hängt von seiner Dimensionierung ab. Die Ladezeit (Ladedauer) und Entladezeit eines Kondensators sind proportional zur Größe des Vorwiderstands R und zu seiner Kapazität C. Das Produkt aus beiden wird als Zeitkonstante τ bezeichnet. Es gilt:
τ = RC
τ: Zeitkonstante
R: Widerstand [Ω]
C: Kapazität des Kondensators [F]
I - Laden (Ladung) eines Kondensators
Nachfolgend wird auf den Ladevorgang (Aufladevorgang) bei Kondensatoren eingegangen.
Laden eines Kondensators - Abbildung 1
Laden eines Kondensators - Abbildung 2
Bei der Aufladung (dem Laden) eines Kondensators verhalten sich Strom und Spannung wie folgt:
Hierbei sind:
Uc: Spannung am Kondensator zur Zeit t [V]
U: Ladespannung [V]
I0: Anfangsstromstärke [A]
I: Stromstärke zur Zeit t [A]
e: Eulersche Zahl e = 2,71828...
τ: Zeitkonstante
t: Zeit [s]
Nachfolgend dargestellt sind das Schaltbild sowie die Schaubilder mit den Ladekurven für Spannung und Strom, die beim Laden eines Kondensators auftreten.
Abb. 1: Schaltbild - Laden eines Kondensators
Ladekurve: Die unten dargestellten Ladekurven entsprechen der Entwicklung der Spannung und des Stroms beim Laden eines Kondensators in Abhängigkeit von der Zeit.
Abb. 2: Diagramm - Laden eines Kondensators - Spannung - Zeit (Dauer)
Abb. 3: Diagramm - Laden eines Kondensators - Strom - Zeit (Dauer)
II - Entladen (Entladung) eines Kondensators
Nachfolgend wird auf den Entladevorgang (die Entladung) bei Kondensatoren eingegangen.
Entladen eines Kondensators - Abbildung 1
Entladen eines Kondensators - Abbildung 2
Beim Entladen (der Entladung) eines Kondensators gelten folgende Zusammenhänge:
Hierbei sind:
Uc: Spannung am Kondensator zur Zeit t [V]
U: Ladespannung [V]
U0: Anfangsspannung am Kondensator [V]
I0: Anfangsstromstärke [A]
I: Stromstärke zur Zeit t [A]
e: Eulersche Zahl e = 2,71828...
τ: Zeitkonstante
t: Zeit [s]
Nachfolgend dargestellt sind das Schaltbild sowie die Schaubilder mit den Entladekurven für Spannung und Strom, die beim Entladen eines Kondensators auftreten.
Abb. 1: Schaltbild - Entladen eines Kondensators
Entladekurve: Die unten dargestellten Entladekurven entsprechen der Entwicklung der Spannung und des Stroms beim Entladen eines Kondensators in Abhängigkeit von der Zeit.
Abb. 2: Diagramm - Entladen eines Kondensators - Spannung - Zeit (Dauer)
Abb. 3: Diagramm - Entladen eines Kondensators - Strom - Zeit (Dauer)
Programmbedienung
Das Verhalten dieser Größen beim Laden, wie beim Entladen eines Kondensators können Sie mit diesem Programmmodul untersuchen. Wählen Sie zunächst durch die Aktivierung des entsprechenden Kontrollschalters, ob Sie die Sachverhalte bei der Ladung, oder der Entladung eines Kondensators analysieren möchten. Legen Sie daraufhin durch eine Bedienung des entsprechenden Rollbalkens die Spannung U fest, für welche die Berechnungen durchgeführt werden sollen und geben Sie die Konstantenwerte für die Kapazität C des Kondensators und den vorgeschalteten Widerstand R ein.
Mit Hilfe des Rollbalkens für die Zeit t legen Sie fest, über welchen Zeitraum der Ladevorgang (Entladevorgang) simuliert bzw. berechnet werden soll. Möchten Sie lediglich die entsprechenden Zahlenwerte für die momentan am Kondensator liegende Spannung und den fließenden Strom ausgeben lassen, so bedienen Sie hierfür die Schaltfläche Berechnen. Soll der entsprechende Prozess grafisch animiert werden, so müssen Sie hierfür den Schalter Start bedienen. Mit Hilfe des Schalters Urzustand versetzen Sie die grafische Darstellung wieder in deren Anfangszustand.
Beachten Sie: Um die Darstellung der beiden Kurven für Strom und Spannung übersichtlich in einem Diagramm ausgeben zu können, wurde der Wert des im Stromkreis fließenden Stroms um den Faktor 50 erhöht (entspricht somit nicht exakt den Daten der numerisch ermittelten Werte).
Laden eines Kondensators - Abbildung 3
Entladen eines Kondensators - Abbildung 3
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.
Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im entsprechenden Leistungskurs (LK).
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden. Dieses Programm kann auch dabei behilflich sein, einen Begriff zum entsprechenden Fachthema zu erklären.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Kurzbeschreibungen von Modulen zum Themengebiet Mechanik - Kurzbeschreibungen von Modulen zum Themengebiet Elektrotechnik - Kurzbeschreibungen von Modulen zum Themengebiet Optik - Kurzinfos zum Themengebiet Thermodynamik sowie unter Kurzbeschreibungen von Modulen zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Elektrische Kapazität und unter Wikipedia - Kondensator zu finden.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Schräger Wurf - Schiefer Wurf, Waagerechter Wurf - Horizontaler Wurf, Hookesches Gesetz, Mechanische Arbeit, Zweites Newtonsches Gesetz, Drittes Newtonsches Gesetz, Gedämpfte mechanische Schwingung, Bewegungen auf einer Kreisbahn, Hebelgesetz, Chaotisches Doppelpendel, Mathematisches Pendel, Freier Fall und Luftwiderstand, Harmonische Schwingungen, Molekularbewegungen, Brownsche Bewegungen, Potentielle und kinetische Energie, Ideale Strömung - Volumenstrom, Druck in Flüssigkeiten, Wellen - Simulationen, Zusammengesetzte Bewegung, Bewegungen in der Ebene, Carnotscher Kreisprozess, Adiabatische Zustandsänderung, Isotherme Zustandsänderung, Isobare Zustandsänderung, Isochore Zustandsänderung, Beugung am Spalt, Hohlspiegel, Sammellinse, Zerstreuungslinse, Wechselstromkreise, RLC-Kreis - RLC-Schaltung, RL-Kreis - RL-Schaltung, RC-Kreis - RC-Schaltung, Resonanz - Resonanzkurve, Widerstände im Wechselstromkreis, Schwingungen und deren Überlagerung, Plattenkondensator, Ladung und Entladung von Kondensatoren, Reihenschaltung und Parallelschaltung, Lissajou-Figuren, 1. Keplersches Gesetz, 2. Keplersches Gesetz, 3. Keplersches Gesetz
Lissajousche Figuren - Reihen- und Parallelschaltung - Widerstände im Wechselstromkreis - Messbrücke - Widerstandsgesetz - Kondensator - Kapazitäten - Plattenkondensator - Transformator - Schwingungsüberlagerung - RC-Kreis - RL-Kreis - RLC-Kreis - Resonanz - Wechselstromkreis
Unterprogramm Ladung und Entladung eines Kondensators
PhysProf 1.1 - Unterprogramm RLC-Kreis
MathProf 5.0 - Unterprogramm Kurven in Parameterform
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm,welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.