MathProf - Zissoide des Diokles - Kurve dritter Ordnung - Polar
Fachthema: Zissoide
MathProf - Analysis - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe für das Modul
zur Analyse und Darstellung von Zissoiden.
Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.
Das Berechnen der Funktionswerte einer Funktion dieser Art kann ebenfalls veranlasst werden. Deren Ausgabe erfolgt in einer Wertetabelle.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Zissoide - Efeu-Kurve - Diokles - Algebraische Kurven - Asymptote - Gleichung - Fläche - Graph - Eigenschaften - Plotten - Grafisch - Bilder - Darstellung - Erklärung - Beschreibung - Definition - Berechnen - Berechnung - Rechner - Beispiel - Grafik - Zeichnen - Darstellen |
Zissoide - Zissoide des Diokles
Modul Zissoide
Im Unterprogramm [Analysis] - [Kurven n-ter Ordnung] - Zissoide kann die Konstruktion einer Zissoide untersucht werden.
Die Zissoide (des Diokles) ist eine Kurve 3. Ordnung, die vom griechischen Mathematiker Diokles (um 200 v. Chr.) beschrieben wurde, um mit diesem Hilfsmittel das Problem der Würfelverdoppelung (auch als delisches Problem bekannt) zu lösen. Diese Bezeichnung leitet sich vom griechischen Wort kissós (Efeu) ab.
Eine Zissoide kann durch folgende Gleichungen beschrieben werden:
1. Gleichung in kartesischer Form:
y²(a - x) = x³; a > 0
2. Gleichungen in Parameterform:
x = ak² / (1 + k²)
y = ak³ / (1 + k²)
3. Gleichung in Polarform:
r = a sin² (φ) / cos (φ) = a sin (φ) tan (φ)
Beschreibung der Erzeugung einer Zissoide:
Gegeben seien ein Kreis mit Radius a, ein Punkt S auf diesem sowie die vertikale Tangente, welche diesen Kreis im Punkt auf der Abszisse gegenüber von S berührt. Bezeichnet man für einen beliebigen Punkt P der Zissoide den Schnittpunkt der Geraden durch die Punkte S und P mit dem Kreis als Punkt K, und den Schnittpunkt dieser Geraden mit der vertikalen Kreistangente als Punkt A, so ist die Länge der Strecke SP gleich der Länge der Strecke KA.
Diese Sachverhalte können Sie in diesem Unterprogramm analysieren.
Formeln - Zissoide
1. Asymptote einer Zissoide:
Die Gleichung der Asymptote einer Zissoide lautet:
x = a
2. Fläche (Flächeninhalt) zwischen der Kurve und der Asymptote:
Die Fläche zwischen einer Zissoide und derer Asymptote beträgt:
A = 3/4 π a²
Darstellung
Durch die Bedienung des Rollbalkens Radius legen Sie den Radius des Kreises fest. Bei einer Veränderung der Position des Rollbalkens Winkelpos. wird der Verlauf der Konstruktion der Kurve demonstriert.
Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die zu verwendende Verzögerung einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Simulation wieder durch eine Bedienung der Schaltfläche Sim. Stop.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Bedienformular
Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
- P beschriften: Punktbeschriftung ein-/ausschalten
- Koordinaten: Anzeige der Koordinatenwerte dargestellter Punkte ein-/ausschalten
- Hilfslinien: Darstellung der zur Konstruktion benötigten Hilfslinien (u. Kreis) ein-/ausschalten
- Kurve hervorheben: Linienstärke der Zissoide normal/fett
Allgemein
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
Weitere Themenbereiche
Beispiel
Positionieren Sie Rollbalken Radius auf den Wert 7 und Rollbalken Winkelpos. auf den Wert 150, so stellt das Programm die Kurve dar, die durch die Gleichung in Polarform
r = 14·sin(φ)·tan(φ)
über einen Winkelbereich von 0 ≤ φ ≤ 150 (im Gradmaß) beschrieben wird.
Für den Inhalt der Fläche (bei komplett dargestellter Kurve) zwischen der Asymptote und der Kurve ermittelt das Programm: A = 461,814 FE. Die vertikal verlaufende Asymptote der Kurve befindet sich bei x = 14.
Für die Längen der Strecken SP und KA ermittelt das Programm den Wert 4,041. Der Mittelpunkt des Kreises befindet sich bei Punkt M (7 / 0).
Grafische Darstellung - Beispiel 1
Grafische Darstellung - Beispiel 2
Grafische Darstellung - Beispiel 3
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Zissoide zu finden.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Integer-Funktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen
MathProf 5.0 - Unterprogramm Strophoide
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.