MathProf - Äußeres Produkt - Vektoren - Rechner - Berechnen
Fachthemen: Vektorprodukt - Interaktiv (3D)
MathProf - Vektorgeometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Schüler, Abiturienten, Studenten, Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe
für das Modul zur Berechnung des Vektorprodukts zweier Vektoren im Raum sowie dem von ihnen eingeschlossenen Winkel.
Dieses Unterprogrammm ermöglicht die interaktive Durchführung dieser sowie die grafische Darstellung der entsprechenden Zusammenhänge.
Ein frei bewegbares und drehbares, dreidimensionales Koordinatensystem erlaubt die Durchführung von Analysen bzgl. Sachverhalten und entsprechender Zusammenhänge zu diesem Fachthema. Auch die Ausführung verschiedener Animationen kann veranlasst werden.
Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind eingebunden.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Vektoren - Produkt - Vektorprodukt - Äußeres Produkt - Orthogonale Vektoren - Orthogonaler Vektor - Darstellung - Berechnung - Berechnen - Rechner - Zeichnen - Darstellen |
Vektorprodukt - Interaktiv (3D)
Modul Vektorprodukt - Interaktiv
Im Unterprogramm [Vektoralgebra ]- [Grundlegendes (3D)] - Vektorprodukt - Interaktiv kann das Vektorprodukt zweier Vektoren interaktiv ermittelt werden.
Unter dem Vektorprodukt
zweier Vektoren a und b versteht man den Vektor, welcher folgende Eigenschaften besitzt:
- c ist sowohl zu a wie auch zu b orthogonal
- Der Betrag von c ist gleich dem Produkt aus den Beträgen der Vektoren a und b und dem Sinus des von ihnen eingeschlossenen Winkels |c| = |a| · |b| · sin j (0 ≤ j ≤ p/2)
- Die Vektoren a, b, c bilden in dieser Reihenfolge ein rechtshändiges System
Berechnung des Vektorprodukts aus skalaren Komponenten:
In diesem Unterprogramm kann das Vektorprodukt zweier Vektoren a und b ermittelt und das durch diese aufgespannte Parallelogramm dargestellt werden.
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.
Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im entsprechenden Leistungskurs (LK).
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
Eine mathematische Herleitung dient dazu, zu erklären, weshalb es zu einer Aussage kommt. Derartige Folgerungen sind unter anderem dazu dienlich, um zu verstehen, weshalb eine Formel bzw. Funktion Verwendung finden kann. Dieses Modul kann auch in diesem Fall hilfreich sein und ermöglicht es durch dessen Nutzung oftmals, einer entsprechenden Herleitung bzw. einem mathematischen Beweis zu folgen, oder einen Begriff zum entsprechenden Fachthema zu erklären.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Es wird ein dem nachfolgend gezeigten, ähnliches Bedienformular zur Verfügung gestellt, welches die Veränderung von Punktkoordinatenwerten, bzw. Koeffizienten mit Hilfe von Rollbalken zulässt.
Die Komponenten ax, ay, az, bx, by, bz der Vektoren a und b können durch manuelle oder simulative Veränderung der Position von Rollbalken eingestellt werden.
Gehen Sie folgendermaßen vor, um Zusammenhänge zu diesem Fachthema interaktiv zu analysieren:
- Aktivieren Sie Kontrollschalter Interaktiv I oder Interaktiv II.
- Bedienen Sie die Schaltfläche Darstellen.
- Nutzen Sie die auf dem Bedienformular zur Verfügung stehenden Schieberegler, um die Koeffizientenwerte der Vektoren a und b zu verändern.
- Wurde die Darstellungsart Interaktiv II gewählt, so bedienen Sie ggf. den Schieberegler Bereich, um die Größe des Darstellungsbereichs zu verändern.
- Starten Sie bei Bedarf eine Autosimulation mit dem Schalter Start Sim. Diese Schaltfläche trägt hierauf die Bezeichnung Stop Sim. Angehalten werden kann die Simulation durch eine erneute Betätigung dieser.
Hinweise:
Vor dem Start einer Simulation wird ein Formular zur Verfügung gestellt, auf welchem Sie durch eine Aktivierung der entsprechenden Kontrollkästchen die Auswahl simulativ zu verändernder Einflussgrößen (Koordinatenwerte, Parameter) treffen.
Bei jeder Veränderung einer Rollbalkenposition werden die Ergebnisse durchgeführter Berechnungen ausgegeben (unter der Voraussetzung, dass Textausgabe eingeschaltet ist).
Das Programm stellt hierbei die folgenden beiden Möglichkeiten zur Verfügung, um interaktive Analysen von Sachverhalten und Zusammenhängen zu diesem Fachthema durchzuführen:
- Interaktiv I
- Interaktiv II
Wird der Kontrollschalter Interakiv I aktiviert, so wird der Darstellungsbereich, abhängig von vorgegebenen Werten, vom Programm automatisch festgelegt.
Bei einer Aktivierung des Kontrollschalters Interakiv II stellt es die Zusammenhänge innerhalb eines durch Zahlenwerteingaben festlegbaren Bereichs dar. Alle auszugebenden Objekte werden in diesem Fall an den Grenzen des eingestellten Darstellungsbereichs beschnitten. Befinden sich hierbei Teile eines Objekts außerhalb des gewählten Darstellungsbereichs und ist dieses hierdurch nicht mehr vollständig sichtbar, so ist der zur Erreichung einer korrekten Ausgabe erforderliche Darstellungsbereich mit Hilfe des zur Verfügung stehenden Rollbalkens Bereich einzustellen.
Im Formularbereich Darstellung - Optionen können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende Einstellungen vornehmen, die bei Ausgabe der grafischen Darstellung der Zusammenhänge wirksam werden:
- Beschriften: Beschriftung dargestellter Punkte ein-/ausschalten
- Hilfslinien: Darstellung von Hilfslinien ein-/ausschalten
- Fläche: Darstellung des von den Vektoren a und b aufgespannten Parallelogramms ein-/ausschalten
- Textausgabe: Anzeige ermittelter Ergebnisse bei Ausgabe der Darstellung ein-/ausschalten
Grundlegendes zum Umgang mit dem Programm bei der Ausgabe dreidimensionaler grafischer Darstellungen erfahren Sie unter Dreidimensionale Grafiken - Handling. Wie Sie das Layout einer 3D-Darstellung konfigurieren können, erfahren Sie unter 3D-Layoutkonfiguration.
Komponentendarstellung (3D)
Komponentendarstellung - Interaktiv (3D)
Vektorprodukt (3D)
Skalarprodukt (3D)
Skalarprodukt - Interaktiv (3D)
Spatprodukt (3D)
Spatprodukt - Interaktiv (3D)
Vektorprojektion (3D)
Vektorprojektion - Interaktiv (3D)
Tripelprodukt (3D)
Tripelprodukt - Interaktiv (3D)
Nach der Bedienung der Schaltfläche Darstellen auf dem Hauptformular des Unterprogramms, sowie einer Positionierung der zur Verfügung stehenden Rollbalken im Formularbereich Vektorprodukt des Bedienformulars, wie nachfolgend gezeigt,
sind die Vektoren a und b definiert mit:
Das Programm gibt für das Vektorprodukt der Vektoren a und b aus:
Für den Betrag des Vektorprodukts (die Fläche des aufgespannten Parallelogramms) der Vektoren a und b wird ermittelt:
Der von den Vektoren a und b eingeschlossene Winkel beträgt: 75,286°.
Grafische Darstellung - Beispiel 1 Grafische Darstellung - Beispiel 2 Grafische Darstellung - Beispiel 3 |
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden.
Wikipedia - Kreuzprodukt
Wikipedia - Vektor
Gerade und Vektoren - Vektorielle Linearkombination - Vektorielles Teilverhältnis - Vektoraddition in der Ebene - Resultierende - Vektorprodukt (3D) - Skalarprodukt (3D) - Spatprodukt (3D) - Vektorprojektion (3D) - Tripelprodukt (3D) - Numerische Vektoraddition im Raum - Grafische Vektoraddition im Raum (3D) - Gerade in Punkt-Richtungs-Form (3D) - Gerade in 2-Punkte-Form (3D) - Ebene in Punkt-Richtungs-Form (3D) - Ebene in 3-Punkte-Form (3D) - Ebene in Normalen-Form (3D) - Ebene in Koordinaten-Form (3D) - Zwei Ebenen (3D) - Kugel - Gerade (3D) - Kugel - Ebene - Punkt (3D) - Kugel - Kugel (3D) - Komponentendarstellung - Interaktiv (3D) - Skalarprodukt - Interaktiv (3D) - Spatprodukt - Interaktiv (3D) - Vektorprojektion - Interaktiv (3D) - Tripelprodukt - Interaktiv (3D) - Grafische Vektoraddition im Raum - Interaktiv (3D) - Gerade in Punkt-Richtungs-Form - Interaktiv (3D) - Gerade in 2-Punkte-Form - Interaktiv (3D) - Ebene in Punkt-Richtungs-Form - Interaktiv (3D) - Ebene in 3-Punkte-Form - Interaktiv (3D) - Ebene in Normalen-Form - Interaktiv (3D) - Ebene in Koordinaten-Form - Interaktiv (3D) - Ebene - Ebene - Interaktiv (3D) - Kugel - Gerade - Interaktiv (3D) - Kugel - Ebene - Punkt - Interaktiv (3D) - Kugel - Kugel - Interaktiv (3D) - Spiegelungen mit Geraden in Punkt-Richtungs-Form (3D) - Spiegelungen mit Geraden in 2-Punkte-Form (3D) - Spiegelungen mit Ebenen in Punkt-Richtungs-Form (3D) - Spiegelungen mit Ebenen in 3-Punkte-Form (3D) - Spiegelungen mit Ebenen in Normalen-Form (3D) - Spiegelungen mit Ebenen in Koordinaten-Form (3D)
Startfenster des Unterprogramms Vektorprodukt - Interaktiv
MathProf 5.0 - Startfenster des Unterprogramms Vektoraddition
MathProf 5.0 - Grafikfenster des Unterprogramms Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.