MathProf - Vektorprodukt - Orthogonaler Vektor - Äußeres Produkt
Fachthema: Vektorprodukt - Kreuzprodukt
MathProf - Vektoralgebra - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Schüler, Abiturienten, Studenten, Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe
für das Modul Lineare Algebra und analytische Geometrie
zum Berechnen des Vektorprodukts (Kreuzprodukts bzw. äußeren Produkts) zweier Vektoren im Raum sowie dem von ihnen eingeschlossenen Winkel.
Dieses Unterprogrammm ermöglicht die numerische Berechnung des Produkts zweier Vektoren sowie die grafische Darstellung derer. Nach einer praktizierten Berechnung und der Ausgabe der entsprechenden Ergebnisse kann der vorliegende Sachverhalt interaktiv grafisch untersucht werden.
Auch die Darstellung des von den beiden Vektoren aufgespannten Parallelogramms wird mittels dem implementierten 3D-Plotter ermöglicht und der Flächeninhalt dessen wird ermittelt und ausgegeben.
Ein frei bewegbares und drehbares, dreidimensionales Koordinatensystem erlaubt die Durchführung interaktiver Analysen bzgl. Sachverhalten und entsprechender Zusammenhänge zu diesem Fachthema. Auch die Ausführung verschiedener Animationen mit Gebilden dieser Art kann veranlasst werden.
Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind eingebunden.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Vektorprodukt - Vektorielles Produkt - Kreuzprodukt - Äußeres Produkt - Vektoren - Flächeninhalt - Vektorprodukt berechnen - Zweier Vektoren - Fläche zwischen Vektoren - Winkel - Fläche - Flächeninhalt - Berechnen - Grafik - Vektor - Schreibweise - Matrix - Parallelogramm - Normalenvektor - Bilden - Anwendung - Vektoren - Betrag - Graph - Formel - Eigenschaften - Gleichung - Grafisch - Bedeutung - Was - Wie - Was bedeutet - Welche - Welcher - Welches - Wodurch - Einführung - Erklärung - Einfach erklärt - Herleitung - Beweis - Beschreibung - Begriff - Begriffe - Arbeitsblatt - Arbeitsblätter - Unterrichtsmaterial - Unterrichtsmaterialien - Lernen - Erlernen - Übungsaufgaben - Üben - Übungen - Lösungen - Aufgaben - Abituraufgaben - Abiturvorbereitung - Abitur - Abi - Mathe - Mathematik - Begriff - Begriffe - Leistungskurs - LK - Klassenarbeit - Klassenarbeiten - Anwendungsaufgaben - Definition - Orthogonal - Orthogonale Vektoren - Orthogonaler Vektor - Darstellung - Berechnung - Rechner - Plotten - Rechenregeln - Dreidimensional - Darstellen - Betrag - Antikommutativgesetz - Distributivgesetze |
Vektorprodukt - Kreuzprodukt
Modul Vektorprodukt
Im Unterprogramm [Vektoralgebra] - [Grundlegendes (3D)] - Vektorprodukt kann das Vektorprodukt (Kreuzprodukt - Äußeres Produkt) zweier Vektoren ermittelt werden.
Das Vektorprodukt (Kreuzprodukt oder äußeres Produkt) stellt die Verknüpfung zweier Vektoren a und b dar, deren Resultat ebenfalls ein Vektor c ist, der orthogonal auf diesen beiden Vektoren steht. Der Betrag des Vektorprodukts (Kreuzprodukts) entspricht dem Flächeninhalt des, von den Vektoren a und b, aufgespannten Parallelogramms. Vektor c ist ein orthogoaler Vektor zum von den Vektoren a und b aufgespannten Parallelogramm.
Unter dem Vektorprodukt (in vektorieller Schreibweise)
zweier Vektoren a und b versteht man den Vektor, der folgende Eigenschaften besitzt:
-
c ist sowohl zu a wie auch zu b orthogonal
-
Der Betrag von c ist gleich dem Produkt aus den Beträgen der Vektoren a und b und dem Sinus des von ihnen eingeschlossenen Winkels |c| = |a| · |b| · sinφ (0 ≤ φ ≤π/2)
-
Die Vektoren a, b, c bilden in dieser Reihenfolge ein rechtshändiges System
Die Berechnung des Vektorprodukts (Kreuzprodukts) aus skalaren Komponenten kann wie folgt durchgeführt werden:
Rechenregeln für das Vektorprodukt:
Das Vektorprodukt (Kreuzprodukt) ist weder kommutativ noch assoziativ. Nachfolgend sind die für dieses Produkt geltenden Rechenregeln aufgeführt:
Antikommutativgesetz:
Distributivgesetze:
In diesem Unterprogramm kann das Vektorprodukt (Kreuzprodukt oder äußeres Produkt) zweier Vektoren a und b ermittelt und das durch diese aufgespannte Parallelogramm dargestellt werden.
Screenshots
Grafische Darstellung - Beispiel 1
Grafische Darstellung - Beispiel 2
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema der Mathematik. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.
Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im entsprechenden Mathe-Leistungskurs (LK).
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
Eine mathematische Herleitung dient dazu, zu erklären, weshalb es zu einer Aussage kommt. Derartige Folgerungen sind unter anderem dazu dienlich, um zu verstehen, weshalb eine Formel bzw. Funktion Verwendung finden kann. Dieses Modul kann auch in diesem Fall hilfreich sein und ermöglicht es durch dessen Nutzung oftmals, einer entsprechenden Herleitung bzw. einem mathematischen Beweis zu folgen, oder einen Begriff zum entsprechenden Fachthema zu erklären.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Berechnung und grafische Darstellung
Um das Vektorprodukt (Kreuzprodukt bzw. äußeres Produkt) zweier Vektoren in diesem Modul ermitteln und darstellen zu lassen, sollten Sie Folgendes ausführen:
- Geben Sie die Koeffizienten der Vektoren a und b in die hierfür vorgesehenen Felder a und b ein.
- Bedienen Sie die Schaltfläche Berechnen.
- Möchten Sie sich Zusammenhänge grafisch veranschaulichen, so aktivieren Sie Kontrollschalter Automatisch oder Statisch und bedienen die Schaltfläche Darstellen.
Das Programm ermittelt zudem, den von den Vektoren a und b eingeschlossenen Winkel φ, sowie den Flächeninhalt des Parallelogramms, welches durch diese beiden Vektoren aufgespannt wird.
Darstellungsbereich
Bei Ausgabe der Darstellung ermöglicht das Programm die Bemessung des Darstellungsbereichs auf eine der folgenden Arten und Weisen:
-
Automatisch
-
Statisch
-
Automatisch:
Wird die Einstellung Automatisch durch die Aktivierung des entsprechenden Kontrollschalters gewählt, so ermittelt das Programm alle zur vollständigen Darstellung des Gebildes erforderlichen x-, y- und z-Koordinatenwerte automatisch und bemisst den Darstellungsbereich dementsprechend.
-
Statisch:
Wird der Kontrollschalter Statisch aktiviert, so verwendet das Programm bei Aufruf der Darstellung den unter Abs. Bereich voreingestellten Darstellungsbereich und beschneidet Gebilde an Stellen, die außerhalb dessen liegen. Diesen Bereich können Sie bei Ausgabe der Darstellung verändern, indem Sie den auf dem Bedienformular zur Verfügung stehenden Rollbalken Bereich positionieren. Der maximal einstellbare Wert entspricht dem Doppelten des unter Abs. Bereich auf dem Hauptformular des Unterprogramms vorgegebenen Werts.
Darstellung - Optionen
Im Formularbereich Darstellung - Optionen können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende Einstellungen vornehmen, die bei Ausgabe der grafischen Darstellung der Zusammenhänge wirksam werden:
- Beschriften: Beschriftung dargestellter Punkte ein-/ausschalten
- Hilfslinien: Darstellung von Hilfslinien ein-/ausschalten
- Fläche: Darstellung des von den Vektoren a und b aufgespannten Parallelogramms ein-/ausschalten
- Textausgabe: Anzeige ermittelter Ergebnisse bei Ausgabe der Darstellung ein-/ausschalten
Allgemein
Grundlegendes zum Umgang mit dem Programm bei der Ausgabe dreidimensionaler grafischer Darstellungen erfahren Sie unter Dreidimensionale Grafiken - Handling. Wie Sie das Layout einer 3D-Darstellung konfigurieren können, erfahren Sie unter 3D-Layoutkonfiguration.
Weitere Themenbereiche
Beispiel
Es gilt, das Vektorprodukt (Kreuzprodukt oder äußeres Produkt) der beiden nachfolgend aufgeführten Vektoren ermitteln zu lassen.
Vorgehensweise:
Nach einer Eingabe der Koeffizientenwerte für die beiden Vektoren, gibt das Programm nach einer Bedienung der Schaltfläche Berechnen folgende Ergebnisse aus:
Das Vektorprodukt (Kreuzprodukt) der Vektoren a und b lautet:
Der Betrag des Vektorprodukts (Kreuzprodukts) der Vektoren a und b besitzt den Wert:
Der von den Vektoren a und b eingeschlossene Winkel beträgt 75,286°.
Grafische Darstellung - Beispiel 3
Grafische Darstellung - Beispiel 4
Grafische Darstellung - Beispiel 5
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden.
Wikipedia - Kreuzprodukt
Wikipedia - Vektor
Gerade und Vektoren - Vektorielle Linearkombination - Vektorielles Teilverhältnis - Vektoraddition in der Ebene - Resultierende - Komponentendarstellung (3D) - Skalarprodukt (3D) - Spatprodukt (3D) - Vektorprojektion (3D) - Tripelprodukt (3D) - Numerische Vektoraddition im Raum - Grafische Vektoraddition im Raum (3D) - Gerade in Punkt-Richtungs-Form (3D) - Gerade in 2-Punkte-Form (3D) - Ebene in Punkt-Richtungs-Form (3D) - Ebene in 3-Punkte-Form (3D) - Ebene in Normalen-Form (3D) - Ebene in Koordinaten-Form (3D) - Zwei Ebenen (3D) - Kugel - Gerade (3D) - Kugel - Ebene - Punkt (3D) - Kugel - Kugel (3D)
Startfenster des Unterprogramms Vektorprodukt
MathProf 5.0 - Startfenster des Unterprogramms Skalarprodukt
MathProf 5.0 - Grafikfenster des Unterprogramms Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.