MathProf - Überbestimmtes lineares Gleichungssystem - LGS
Fachthema: Überbestimmtes lineares Gleichungssystem
MathProf - Lineare Algebra - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen zur Anwendung in Ingenieurwissenschaften.
Online-Hilfe
für das Modul zum Berechnen der Lösungen überbestimmter
linearer Gleichungssysteme bis 20. Grades.
Das Programm ermittelt durch die Verwendung entsprechender Methoden sämtliche Pseudolösungen eines definerten überbestimmten Systems linearer Gleichungen.
Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben, sind implementiert.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Überbestimmtes LGS - Gleichungssystem - LGS - Gleichungen - Überbestimmt - Überbestimmtes lineares Gleichungssystem - Überbestimmtes Gleichungssystem - Lösen - Erklärung - Beschreibung - Arbeitsblatt - Arbeitsblätter - Unterrichtsmaterial - Unterrichtsmaterialien - Lernen - Erlernen - Übungsaufgaben - Üben - Übungen - Lösungen - Aufgaben - Definition - System - Näherungslösung - Pseudolösungen - Berechnen - Rechner - Überbestimmte Systeme - Lösungsmenge - Lösungen für mehr Gleichungen als Unbekannte - Lösungen für 4 Gleichungen und 3 Unbekannte - Überbestimmte LGS lösen - Überbestimmte Gleichungssysteme lösen - Lösung |
Überbestimmtes lineares Gleichungssystem
Modul Überbestimmtes lineares Gleichungssystem
Mit Hilfe des Unterprogramms [Algebra] - [Sonstige Gleichungssysteme] - Überbestimmtes lineares Gleichungssystem können Pseudolösungen überbestimmter linearer Gleichungssysteme ermittelt werden.
Ein lineares Gleichungssystem ist nur dann eindeutig lösbar, wenn die Anzahl der Gleichungen n mit der Anzahl der Variablen n genau übereinstimmt, diese sich nicht widersprechen und nicht linear voneinander abhängig sind.
Ist die Zahl von Gleichungen in einem Gleichungssystem größer als die Zahl Unbekannter, so handelt es sich um ein überbestimmtes Gleichungssystem (überbestimmtes LGS). Ein derartiges Gleichungssystem kann eindeutig lösbar sein. Pseudolösungen (Näherungslösungen) von Gleichungssystemen dieser Art können mit Hilfe dieses Unterprogramms ermittelt werden.
Ergebnisse dieser Art sind Näherungswerte, die Sie mit diesem Modul für Gleichungssysteme bis 20. Grades ermitteln lassen können.
Berechnung
Um mit diesem Modul die Berechnung eines überbestimmten linearen Gleichungssystems durchführen zu lassen, sind vor der Eingabe von Zahlenwerten die Anzahl Unbekannter, sowie die Anzahl der Gleichungen des zu berechnenden Gleichungssystems durch die Benutzung der Steuerelemente Anz. Unbekannte und Anz. Gleichungen festzulegen. Bei jeder Bedienung eines dieser Steuerelemente werden alle Eingaben gelöscht.
Nach der Eingabe der entsprechenden Koeffizientenwerte (linke Seite) und der Absolutglieder (rechte Seite), sowie einer Bedienung des Schalters Berechnen, werden die Lösungen des Systems ausgegeben.
Hinweise:
Die Anzahl von Gleichungen muss stets größer sein als die Anzahl Unbekannter. Ist die Anzahl Unbekannter gleich der Anzahl der Gleichungen, so wird das Gleichungssystem als bestimmt behandelt.
Wird mit Hilfe des eingesetzten Verfahrens keine Lösung gefunden, so erhalten Sie eine entsprechende Meldung.
Allgemein
Über den Menüpunkt Datei - Koeffizienten speichern können Sie die Koeffizienten des überbestimmten Gleichungssystems speichern und bei Bedarf über den Menüpunkt Datei - Koeffizienten laden wieder laden.
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Grafikprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Üben sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Benutzbarbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Übungen hierzu.
Oftmals lassen sich hiermit auch die Lösungen von Übungsaufgaben durch benutzerdefinierte Festlegungen und Eingaben numerisch oder grafisch ermitteln bzw. auswerten. Erlernte Fertigkeiten können somit auf anschauliche Weise untersucht werden. Implementierte Beispiele zu Sachverhalten erlauben die Bezugnahme zum entsprechenden Fachthemengebiet.
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Weitere Themenbereiche
Unterbestimmtes lineares Gleichungssystem
Beispiel
Es gilt, die reellen Lösungen des nachfolgend aufgestellten, überbestimmten linearen Gleichungssystems ermitteln zu lassen (2 Unbekannte, 3 Gleichungen):
1·x1 - 1·x2 = 2
2·x1 + 3·x2 = -3
4·x1 + 3·x2 = 4
Vorgehensweise und Lösung:
Nach einer Festlegung der Anzahl Unbekannter auf 2, der Festlegung der Anzahl der Gleichungen auf 3, der Eingabe folgender Koeffizientenwerte in die Tabelle Koeffizienten:
1 -1
2 3
4 3
und der Eingabe nachfolgend aufgeführter Koeffizientenwerte in die Tabelle Absolutglieder:
2
-3
4
gibt das Programm nach einer Bedienung der Schaltfläche Berechnen für die Pseudolösungen des Systems aus:
x1 ~ 1,918182
x2 ~ 1,663636
Beispiel 1
Beispiel 2
Beispiel 3
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Overdetermined system zu finden.
Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL-Gleichungssystem - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte
MathProf 5.0 - Unterprogramm Komplexes Gleichungssystem
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.