MathProf - Türme von Hanoi - Turm von Hanoi - Mathematische Spiele
Türme von Hanoi
MathProf - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Schüler, Abiturienten, Studenten, Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe
zur Ausführung des Geduldsspiels Türme von Hanoi und zur Darstellung
der Lösungen dessen. Dieses Spiel kann in verschiedenen Schwierigkeitsstufen ausgeführt werden.
Das Programm ermöglicht die Simulation der entsprechenden Zusammenhänge mit einer Anzahl zwischen 3 und 20 Scheiben und gibt die entsprechenden Zwischenergebnisse bezüglich der durchgeführten Züge in einer Tabelle aus.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Türme von Hanoi - Türme - Turm - Hanoi - Turmbau von Hanoi - Berechnung - Rekursiv - Rechner - Berechnung - Berechnen - Dauer - Lösung - Züge - Animation - Graph - Grafisch - Darstellen - Darstellung - Bedeutung - Was sind - Programm - Simulation - Dauer - Anleitung - Erklärung - Beschreibung - Einführung - Spiel - Anzahl - 3 Scheiben - 4 Scheiben - 5 Scheiben - 6 Scheiben - 7 Scheiben - 8 Scheiben |
Türme von Hanoi - Turm von Hanoi
Modul Türme von Hanoi
Mit Hilfe des Unterprogramms [Sonstiges] - [Spiele] - Türme von Hanoi kann das bekannte Problem der Türme von Hanoi grafisch simuliert werden.
Die Türme von Hanoi sind ein mathematisches Knobel- und Geduldsspiel.
Es stehen drei Felder zur Verfügung, auf die Scheiben verschiedener Größe gelegt werden können. Zu Beginn sind alle Scheiben auf einem Feld, der Größe nach geordnet, mit der größten Scheibe unten und der kleinsten oben. Bei jedem Zug darf die oberste Scheibe eines beliebigen Feldes auf eines der beiden anderen Felder gelegt werden, vorausgesetzt, dort liegt nicht schon eine kleinere Scheibe. Ziel des Spiel ist es, den kompletten Scheiben-Stapel auf ein anderes Feld zu versetzen.
Vermutlich wurde das Spiel 1883 vom französischen Mathematiker Edouard Lucas erfunden. Er dachte sich dazu die Geschichte aus, dass indische Mönche im großen Tempel zu Benares, im Mittelpunkt der Welt, einen Turm aus 64 goldenen Scheiben versetzen müssten, und, wenn ihnen das gelungen sei, wäre das Ende der Welt gekommen.
Die minimale Anzahl von Zügen für einen Stapel aus n Scheiben beträgt 2n-1, bei einem Turm von 8 Scheiben (die gängigste Variante) also 255 Züge. Für den Stapel aus 64 Scheiben würden 18.446.744.073.709.551.615, also mehr als 18 Trillionen Züge benötigt. Würde man jede Sekunde eine Scheibe bewegen, bräuchte man dafür etwa 580 Milliarden Jahre!
Bedienung
Gehen Sie folgendermaßen vor, um das Spiel zu starten:
- Wählen Sie zunächst durch die Einstellung am Rollbalken Scheiben die Anzahl der Scheiben für die die Simulation durchgeführt werden soll (zwischen 3 und 20).
- Bedienen Sie den Rollbalken Verzögerung, um festzulegen mit welcher Verzögerungszeit die Simulation durchgeführt werden soll.
- Legen Sie durch die Aktivierung bzw. Deaktivierung des Kontrollkästchens Scheiben runden fest, ob die Scheiben abgerundet dargestellt werden sollen (Abrundung verlangsamt die Darstellungsgeschwindigkeit).
- Bedienen Sie die Schaltfläche Start.
Soll die Simulation abgebrochen werden, so bedienen Sie die Schaltfläche Stop.
Um die Darstellung nach Durchführung einer Simulation wieder in deren Urzustand zu versetzen, wählen Sie den Menüpunkt Datei - Urzustand herstellen.
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Grafikprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Üben sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Benutzbarbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Übungen hierzu. Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens genutzt werden.
Oftmals lassen sich hiermit auch die Lösungen von Übungsaufgaben durch benutzerdefinierte Festlegungen und Eingaben numerisch oder grafisch ermitteln bzw. auswerten. Erlernte Fertigkeiten können somit auf anschauliche Weise untersucht werden. Implementierte Beispiele zu Sachverhalten erlauben die Bezugnahme zum entsprechenden Fachthemengebiet.
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Beispiel 1
Beispiel 2
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Türme von Hanoi zu finden.
Zahlenstrahl - Römische Zahlen - Schriftliche Addition - Schriftliche Subtraktion - Schriftliche Multiplikation - Schriftliche Division - Schriftliche Potenzierung - Aussagenlogik - Zahltypumwandlung - Zinsrechnung - Zinseszinsrechnung grafisch - Annuitätentilgung - Jahreszinsrechnung - Physikalische Größen - Materialkonstanten - Fachbegriffe Deutsch - Englisch - Mandelbrot- und Juliamengen - Zusammenhänge Mandelbrot-Juliamengen - Sierpinski-Dreieck - Koch-Kurve - Pythagoras-Baum - Feigenbaum-Diagramm - Lindenmayer-System - Lindenmayer-System II - Logistische Gleichung I - Logistische Gleichung II - Diagramme - Tortendiagramm - Kryptografie - Raumgittermodelle (3D) - Paare geordnet - Kalender - Rechnen mit selbstdefinierten Formeln - Zeichenprogramm - Tangram - Tetris - Spiel 15 - Dame - Schach
MathProf 5.0 - Unterprogramm Spiel 15
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.