MathProf - Rechenschieber - Rechenstab - Dividieren - Multiplizieren - Erklärung

MathProf - Mathematik-Software - Rechenschieber - Rechenstab - Zahlen - Simulation - Lernen

Fachthema: Rechenhilfsmittel - Rechenschieber

MathProf - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Studenten, Lehrer und Ingenieure sowie für alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Rechenschieber - Rechenstab - Logarithmus - Beschreibung - Dividieren - Multiplizieren

Online-Hilfe
für das Modul zur interaktiven Nutzung eines Rechenschiebers.

Der in diesem Unterprogramm dargestellte Rechenschieber kann realitätskonform bedient werden und bietet hierdurch die Möglichkeit den Umgang mit einem Instrument dieser Art zu üben und zu verstehen.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Rechenschieber - Rechenstab - Rechenhilfsmittel - Ablesen - Anleitung - Bedienen - Benutzen - Erklärung - Multiplikation - Division - Logarithmus - Beschreibung - Dividieren - Multiplizieren - Anleitung - Rechnen - Berechnen - Kehrwerte - Logarithmen - Bedienen - Bedienung - Zahlen - Simulation - Lernen - Mathematik


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
    

Rechenschieber

 
MathProf - Rechenschieber - Rechenstab - Ablesen - Anleitung - Bedienen - Benutzen - Erklärung - Multiplikation - Division
Modul Rechenschieber


 
Das Unterprogramm [Sonstiges] - Rechenschieber ermöglicht es, die Funktionsweise eines Rechenschiebers zu analysieren.

 

MathProf - Rechenschieber - Rechenstab - Logarithmus - Beschreibung - Dividieren - Multiplizieren - Anleitung - Rechnen

 

Ein Rechenschieber oder Rechenstab ist ein analoges Rechenhilfsmittel zur Durchführung von Grundrechenarten, vorzugsweise der Multiplikation und Division.
 
Das Prinzip eines Rechenschiebers besteht in der Addition oder Subtraktion von Strecken, die sich als Skalen auf dem festen und dem beweglichen Teil des Rechenschiebers befinden. Da es bis zu den frühen 1970er Jahren keine Möglichkeit gab, Berechnungen mit dem Taschenrechner oder mit dem Computer durchzuführen, galt der Rechenschieber als das wichtigste Recheninstrument seiner Zeit.
 
Ein Rechenschieber besteht aus einem Körper, auf dem meist mehrere parallel angeordnete Skalen angebracht sind, einer beweglichen Zunge (Schieber) mit gleichartigen eigenen Skalen sowie einem auf dem Körper verschiebbaren Läufer mit einer Querstrich-Markierung. Durch Verschieben der Skalen gegeneinander wird die Rechenoperation durchgeführt und die Ergebnisse können an der entsprechenden Zahlenwertstelle abgelesen werden. Die Läufermarkierung erlaubt das Einstellen von Werten zwischen den Skalenstrichen sowie das Ablesen an den auseinander liegenden parallelen Skalen.
 
In diesem Modul können der Läufer (grau), sowie die Zunge (gelb) des Rechenschiebers durch Anklicken und Positionierung bei gedrückt gehaltener linker Maustaste bewegt werden. 
 
Multiplikation:

Da die Skalen C und D auf dem Rechenschieber logarithmisch sind, erhält man durch die Addition zweier Strecken mit Hilfe dieser Skalen eine Summe aus zwei Logarithmen. Dies erreicht man, indem man den Zungenanfang der C-Skala über den ersten Faktor der D-Skala schiebt. Der Läufer wird jetzt über den zweiten Faktor auf der C-Skala geschoben, so dass das Ergebnis bei D abgelesen werden kann. Da die Summe der Einzel-Logarithmen der Logarithmus des Produktes ist, entspricht der abzulesende Summenwert dem Produkt.

Denn es gilt:  lg(a·b) = lg(a) + lg(b)

Division:

Die Division ist die Umkehrung der Multiplikation. Somit ist es möglich den Quotienten zweier Zahlen über eine Differenz von Logarithmen ermitteln.

Es gilt:  lg(a/b) = lg(a) - lg(b)

Durch die logarithmische Teilung der Skalen C und D verschiebt man die Zunge so, dass der Dividend auf der D-Skala unter dem Divisor auf der C-Skala steht. Der Quotient entspricht der Differenz der logarithmischen Strecken. Man kann ihn sofort an der D-Skala unter dem Zungenanfang der C-Skala ablesen, ohne den Läufer einmal verschoben zu haben.

Kehrwerte:

Die rot bezifferte Reziprok-Skala (Kehrwert-Skala) CI  befindet sich auf der Zunge des Rechenschiebers und verläuft – im Gegensatz zu allen anderen Skalen – von rechts nach links. Sie stellt spiegelbildlich die C-Skala dar und dient somit zur Berechnung der Kehrwerte.

Addiert man mit dem Rechenschieber den Logarithmus einer Zahl zum Logarithmus von deren Kehrwert, so lässt sich das Ergebnis am Endstrich ablesen, also beim Logarithmus der Zahl 10. Da es beim Rechnen mit dem Rechenschieber lediglich auf die Ziffernfolge des Ergebnisses ankommt, kann die Zahl 10 durch 1 ersetzt werden. Ein Kehrwert lässt sich somit unmittelbar oberhalb des eigentlichen Wertes der Skala C auf der CI-Skala ablesen.

Logarithmen:
Um Logarithmen bestimmen zu können, benötigt man die gleichmäßig geteilte Logarithmen-Skala L, welche ebenfalls auf der Zunge des Rechenstabs aufgetragen ist. Durch die Logarithmen-Skala erhält man keine Ziffernfolge, sondern lediglich die Mantisse des Ergebnisses.

Gilt es den Zehnerlogarithmus einer Zahl zu bestimmen, so fixiert man den Logarithmanden mit dem Läufer auf C und liest die Mantisse auf der Skala L ab.

Die Logarithmen-Bestimmung wird vor allem zur Bestimmung von Potenzen und Wurzeln beliebiger Exponenten verwendet. Da jedoch durch jeden kleinen Fehler bei der Ermittlung des Logarithmus die Genauigkeit deutlich beeinträchtigt wird, dient diese Methode lediglich für Überschlagsrechnungen.

Hinweis:
Rechenschieber erlauben die Durchführung weiterer Operationen. Aus Gründen der Übersichtlichkeit wurde auf die Darstellung weiterer Skalen (z.B. für Quadratzahlen, Kubikzahlen etc.) verzichtet.
 
Beispiel

Beispiel 1:

Berechne mit dem Rechenschieber: 8.5 / 4.5

Nach einem Klick auf den grauen Läufer und einer Positionierung der Fadenlinie dessen auf den Strich der Skala D bei 8.5, sowie einer Positionierung des Skalenwerts 4.5 des gelben Schiebers (Zunge) an der Fadenlinie, kann auf Skala D beim Wert "1" der Skala C der Wert 1.88 abgelesen werden.

Der exakte Wert beträgt ca. 1.888888.

Beispiel 2:

Berechne mit dem Rechenschieber: 3.5 * 4.5

Nach einem Klick auf den grauen Läufer und einer Positionierung der Fadenlinie dessen auf den Strich der Skala D bei 3.5, sowie einer Positionierung des Skalenwerts CI = 4.5 (obere Skala) des gelben Schiebers (Zunge) an der Fadenlinie, kann auf Skala D beim Wert "1" der Skala C der Wert 15.75 abgelesen werden.
 
Arbeitsblätter - Unterrichtsmaterialien - Nutzung zu Unterrichtszwecken

 
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.

Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.

 

Aufgaben - Lernen - Üben - Übungen

  
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Grafikprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Üben sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Benutzbarbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Übungen hierzu. Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens genutzt werden. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.
 
Oftmals lassen sich hiermit auch die Lösungen von Übungsaufgaben durch benutzerdefinierte Festlegungen und Eingaben numerisch oder grafisch ermitteln bzw. auswerten. Erlernte Fertigkeiten können somit auf anschauliche Weise untersucht werden. Implementierte Beispiele zu Sachverhalten erlauben die Bezugnahme zum entsprechenden Fachthemengebiet.


Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.

Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind,können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.

  
Weitere Screenshots zu diesem Modul

 

MathProf - Rechenschieber - Rechenstab - Zahlen - Simulation - Lernen - Mathematik - Berechnen - Bedienen - Bedienung
Bild 1
 

MathProf - Rechenschieber - Rechenstab - Ablesen - Anleitung - Bedienen - Benutzen - Erklärung - Multiplikation - Division
Bild 2


 

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
 
Hilfreiche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Rechenschieber zu finden.

 
Weitere implementierte Module zum Themenbereich Sonstiges


MathProf - Kristallstruktur - Kristallgitter - Gittermodell - Kristallgittertypen - Räumlicher Bau von Molekülen - Hexagonales Gitter - Kubisch flächenzentriertes Gitter - Triklines Gitter raumzentriert - Kubisch - Monoklin basiszentriert - Monoklin einfach - Rhombisch basiszentriert - Rhombisch einfach - Rhombisch flächenzentriert - Rhombisch raumzentriert -Tetragonal raumzentriert - Tetragonal - Triklin - Raumzentriertes Gitter - Kubisches Gitter - Raumgitter - Modell - Monoklin basiszentriertes Gitter - Monoklines Gitter - Rhombisch basiszentriertes Gitter - Darstellen - ZeichnenMathProf - Raumgitter - Rhombisch flächenzentriertes Gitter - Rhomisch raumzentriertes Gitter - Rhomboedrisches Gitter - Tetragonal raumzentriertes Gitter - Tetragonales Gitter - Kristallsystem - Raumzentriert - Kubisch - Monoklin - Rhombisch - Flächenzentriert -  Rhomboedrisch - Tetragonal - Triklin - Dreidimensional - 3D - Darstellen - Zeichnen
 

Zahlenstrahl - Römische Zahlen - Schriftliche Addition - Schriftliche Subtraktion - Schriftliche Multiplikation - Schriftliche Division - Schriftliche Potenzierung - Aussagenlogik - Zahltypumwandlung - Zinsrechnung - Zinseszinsrechnung grafisch - Annuitätentilgung - Jahreszinsrechnung - Physikalische Größen - Materialkonstanten - Fachbegriffe Deutsch - Englisch - Mandelbrot- und Juliamengen - Zusammenhänge Mandelbrot-Juliamengen - Sierpinski-Dreieck - Koch-Kurve - Feigenbaum-Diagramm - Lindenmayer-System - Lindenmayer-System II - Logistische Gleichung I - Logistische Gleichung II - Diagramme - Tortendiagramm - Kryptografie - Raumgittermodelle (3D) - Paare geordnet - Kalender - Rechnen mit selbstdefinierten Formeln - Zeichenprogramm - Tangram - Tetris - Spiel 15 - Türme von Hanoi - Dame - Schach - Logische Verknüpfungen - Dualzahl - Dezimalzahl - Zinsrechnung - Interaktiv - Tageszinsrechnung - Interaktiv - Zins und Zinseszins - Annuitätentigung - Interaktiv - Iterated function systems IFS - Acht-Damen-Problem - Rucksack-Problem - Weltzeiten - Josephus-Problem - Chinesisches Solitaire

 

Screenshots weiterer Module von MathProf


MathProf - Feigenbaum-Diagramm - Logistische Abbildung - Feigenbaum-Attraktor - Bifurkation - Bifurkationsdiagramm - Verhulst - Bild - Darstellen - Grafik - Chaos - Chaotisches Verhalten - Zahl - Chaostheorie - Feigenbaum-Konstante
MathProf 5.0 - Unterprogramm Feigenbaum-Diagramm



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0