MathProf - Wurzelfunktion - Wurzelfunktionen - Wurzelgleichungen

MathProf - Mathematik-Software - Wurzelfunktion | Quadratwurzelfunktion | Parameter

Fachthema: Wurzelfunktion

MathProf - Analysis - Software für interaktive Mathematik für das Berufskolleg, das Abitur und das Studium zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Wurzelfunktion | Quadratwurzelfunktion | Parameter

Online-Hilfe
für das Modul zur Untersuchung des Einflusses von
Parametern auf eine Wurzelfunktion.

Dieses Unterprogramm ermöglicht es unter anderem, wesentliche Eigenschaften einer Wurzelgleichung zu analysieren, den Graph einer Wurzelfunktion plotten zu lassen und sich die erste Ableitung einer Quadratwurzelfunktion darstellen zu lassen.


Beim Zeichnen des Graphen einer Funktion dieser Art können auch deren Koordinatenwerte bei beliebiger Position interaktiv abgetastet werden.

Das Berechnen der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

Die Ermittlung der Funktionswerte einer definierten Funktion kann ebenfalls veranlasst werden. Deren Ausgabe erfolgt in einer Wertetabelle.

MathProf - Software für interaktive Mathematik
 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Wurzelfunktion - Wurzelgleichung - Wurzelfunktionen - Wurzelgleichungen - Quadratwurzelfunktion - Quadratwurzel - Wurzelexponent - Funktionsgleichung - Wurzel - Funktion - Ableitung - Plotten - Schaubild - Analysieren - Verschieben - Berechnen - Beispiel - Verändern - Veränderung - Ändern - Änderung - Übersicht - Plotter - Zeichnen - Darstellung - Globalverhalten - a - b - c - d - Erklärung - Einfach erklärt - Beschreibung - Herleitung - Beweis - Bedeutung - Was bedeutet - Definition - Definitionsbereich - Arbeitsblatt - Arbeitsblätter - Unterrichtsmaterial - Unterrichtsmaterialien - Lernen - Erlernen - Einführung - Übungsaufgaben - Üben - Übungen - Lösungen - Aufgaben - Verlauf - Wertemenge - Gleichung - Graphen - Allgemeine Form - Begriff - Begriffe - Untersuchen - Untersuchung - Abituraufgaben - Abiturvorbereitung - Abitur - Abi - Leistungskurs - LK - Klassenarbeit - Klassenarbeiten - Anwendungsaufgaben - Mathe - Mathematik -  Nullstellen - Formel - Parameter - Grafisch - Eigenschaften - Grafik - Bilder - Graph - Berechnen - Rechner - Funktionswerte - Wertetabelle - Berechnung - Darstellen - Grafische Darstellung

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
 

Parameter der Quadratwurzelfunktion

 

MathProf - Wurzelfunktion - Quadratwurzelgleichungen - Wurzelgleichungen - Quadratwurzelfunktion - Parameter - Eigenschaften - Funktionsgleichung - Ableitung - Darstellen - Plotten - Wurzelexponent - Darstellung - Globalverhalten - Definition - Definitionsbereich - Formel - Zeichnen - Plotter - Rechner - Berechnen - Schaubild
Modul Parameter der Quadratwurzelfunktion



Durch die Benutzung des kleinen Unterprogramms [Analysis] - [Parameteranalyse spez. Funktionen] - Parameter der Quadratwurzelfunktion kann der Einfluss von Parametern auf Quadratwurzelfunktionen (Wurzelgleichungen) untersucht werden.

 

MathProf - Wurzelfunktion - Quadratwurzelfunktion - Verschieben - Eigenschaften - Funktionsgleichung - Ableitung - Darstellen - Plotten - Graph - Grafik - Zeichnen - Plotter - Rechner - Berechnen - Aufgaben - Schaubild
 

Einleitung - Allgemeines

 
Wurzelfunktionen sind Funktionen mit dem Wertebereich von 0 < y < ∞. Wurzelfunktionen der Form y = n-te √x , x > 0, (n = 2, 3, 4, ...) sind auf das Intervall [0,∞] beschränkte Umkehrfunktionen von Potenzfunktionen der Form y = xn. Sie sind punktsymmetrisch zum Koordinatenursprung. Eine Wurzelfunktion zuvor beschriebener Art ist streng monoton wachsend. Sie besitzt eine Nullstelle bei x0 = 0. Unter der Wurzel darf keine negative Zahl vorkommen.

Bei einer Wurzelfunktion handelt es sich um eine Funktion, bei der sich eine Variable im Radikanden von Wurzeln befindet. Sie ist die Umkehrfunktion der Potenzfunktion für positive Zahlen. Die ganze Zahl, die sich am Beginn des Wurzelzeichens befindet, wird Wurzelexponent genannt. Sie erteilt Auskunft darüber, um die wievielte Wurzel es sich handelt. Ist keine Zahl angegeben, so handelt es sich um die zweite Wurzel.

Wesentliche Eigenschaften einer Wurzelfunktion:

- Wurzelfunktionen können keine negativen y-Werte annehmen
- Eine Wurzelfunktion der Form y = √x verläuft durch die Punkte P1(0|0) und P2(1|1)
- Eine Wurzelfunktion besitzt eine Nullstelle bei N (0|0)
- Eine Wurzelfunktion besitzt keine Symmetrie, sie ist unsymmetrisch
 
Wurzelgleichungen sind Gleichungen, bei denen dieser beschriebene Sachverhalt vorliegt.
 
Unter Wertemenge (Wertebereich) einer Wurzelfunktion wird die Menge aller möglichen Werte verstanden, welche eine Funktion der Form y = n-te √x innerhalb ihres Definitionsbereichs annehmen kann.

Für gerade Wurzelexponenten gilt für Wurzelfunktionen oben beschriebener Art:

Definitionsbereich:  0 < x < ∞
Wertebereich:        0 < y < ∞

Für ungerade Wurzelexponenten gilt für diese:

Definitionsbereich: -∞ < x < ∞
Wertebereich:       -∞ < y < ∞
 

Dieses Modul - Quadratwurzelfunktion


Mit den auf dem Bedienformular in diesem Unterprogramm zur Verfügung stehenden Rollbalken haben Sie die Möglichkeit, die Parameter a, b, c und d einer Quadratwurzelfunktion (Wurzelgleichung) der Form
 

f(x) =  (ax² + bx + c + d 

zu ändern und somit deren Wirkung auf den Funktionsverlauf zu untersuchen. Zudem wird die erste Ableitung der dargestellten Quadratwurzelfunktion ausgegeben.

Es sei darauf hingewiesen, dass diese Funktion nur definiert ist, wenn deren Radikand ax²+bx+c 0 ist. Ist dieser kleiner Null, wird keine Darstellung ausgegeben.
 
Hinweis:
Beliebige, frei definierbare Quadratwurzelfunktionen können unter anderem in den Unterprogrammen Mathematische Funktionen I sowie Mathematische Funktionen II dargestellt und untersucht werden. Hierbei ist zur Definition einer Funktion dieser Art der Syntaxbefehl SQRT() bzw. WURZEL() zu verwenden. Beispiele zur grafischen Darstellung oder Analyse einer derartigen Funktion der Form f(x) sind die Terme: SQRT(X), 2*SQRT(X-3), WURZEL(3*X-4), 3*(X+WURZEL(2-X)). Weitere Hinweise und Möglichkeiten zur Definition von Funktionen dieser oder ähnlicher Art in diesem Programm sind unter Syntaxregeln zu finden.
 

Darstellung


Gehen Sie folgendermaßen vor, um Untersuchungen mit diesem Unterprogramm durchzuführen:
 

  1. Durch die Positionierung der Schieberegler Parameter a, Parameter b, Parameter c und Parameter d können Sie die Parameter a, b, c und d der o.a. Funktion verändern und somit deren Einfluss analysieren. Zudem ermöglicht das Programm die Darstellung der 1. Ableitung der Kurve. Aktivieren Sie hierzu das Kontrollkästchen 1. Ableitung. Verfügt die Kurve über Nullstellen, so werden diese nach einer Aktivierung des Kontrollkästchens Nullstellen markiert.
     
  2. Möchten Sie sich die Koordinatenwerte eines Punkts der Kurve (bzw. derer 1. Ableitung) ausgeben lassen, so können Sie die Schaltfläche Punkt auf dem Bedienformular nutzen und den hierfür benötigten Abszissenwert im daraufhin erscheinenden Formular eingeben. Aktivieren Sie hierfür zuvor das Kontrollkästchen Punkt. Übernommen wird dieser, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Soll die Position des Fangpunkts mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach rechts oder nach links.
     
  4. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die zu verwendende Verzögerung einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
 
Arbeitsblätter - Unterrichtsmaterialien - Nutzung zu Unterrichtszwecken

 
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.

Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.

 

Aufgaben - Lernen - Üben - Übungen

  
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema der Mathematik. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.

Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im Mathe-Leistungskurs (LK).
 
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.

Eine mathematische Herleitung dient dazu, zu erklären, weshalb es zu einer Aussage kommt. Derartige Folgerungen sind unter anderem dazu dienlich, um zu verstehen, weshalb eine Formel bzw. Funktion Verwendung finden kann. Dieses Modul kann auch in diesem Fall hilfreich sein und ermöglicht es durch dessen Nutzung oftmals, einer entsprechenden Herleitung bzw. einem mathematischen Beweis zu folgen, oder einen Begriff zum entsprechenden Fachthema zu erklären.

Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit. 

  
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Bedienformular

 

MathProf - Wurzelfunktion - Kurve


Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung des entsprechenden Kontrollkästchens folgende zusätzliche Einstellung vornehmen:

  • 1. Ableitung: Darstellung der 1. Ableitung der ausgegebenen Funktion ein-/ausschalten
 

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Mathematische Funktionen I

 

Beispiel


Wurden durch die Positionierung der Rollbalken folgende Werte eingestellt:

Parameter a: 2

Parameter b: 3

Parameter c: 2

Parameter d: -7

 

so wird die Wurzelfunktion f(x) =  (2·x²+3·x+2)-7 dargestellt.

 

Für die Nullstellen der Funktion gibt das Programm die Koordinatenwerte N1 (-5,655 / 0) sowie N2 (4,155 / 0) aus.

 

Bei einer Positionierung des Mausfangpunkts auf den Wert (3 / 0) kann festgestellt werden, dass der Ordinatenwert der Funktion an dieser Stelle y = -1,615, sowie der entsprechende Wert für die 1. Ableitung an dieser Stelle y = 1,393 beträgt.
 

Weitere Screenshots zu diesem Modul

 

MathProf - Wurzelfunktion - Quadratwurzelgleichungen - Wurzelgleichungen - Quadratwurzelfunktion - Verschieben - Eigenschaften - Funktionsgleichung - Ableitung - Formel - Analysieren - Darstellen - Plotten - Graph - Grafik - Zeichnen - Plotter - Rechner - Berechnen - Schaubild
Grafische Darstellung - Beispiel 1

MathProf - Wurzelfunktionen - Quadratwurzelfunktionen - Verschieben - Eigenschaften - Funktionsgleichung - Ableitung - Untersuchen - Parameter - Funktionswerte - Darstellen - Formeln - Plotten - Graph - Grafisch - Zeichnen - Plotter - Rechner - Berechnen - Schaubild
Grafische Darstellung - Beispiel 2

MathProf - Quadratwurzelfunktion - Quadratwurzelfunktionen - Verlauf - Wertemenge - Gleichung - Graphen - Allgemeine Form - Nullstellen - Formel - Grafisch - Bilder - Wertetabelle - Berechnung - Ableitung - Graph - Eigenschaften - Lösen - Mathematik - Zeichnen - Beispiel - Wurzel - Quadratwurzel - Funktion - Wurzelfunktionen
Grafische Darstellung - Beispiel 3
   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Wurzel zu finden.
 

Weitere implementierte Module zum Themenbereich Analysis

  
MathProf - Tangente - Normale - Tangente und Normale - Tangentengleichung - Tangentensteigung - Bestimmter Punkt - Steigungswinkel - 1. Ableitung - Normalengleichung - Steigung einer Kurve - Einzeichnen - Steigung in einem Punkt - Steigungswinkel einer Funktion - Gleichung der Tangente - Tangente bilden - Eigenschaften - Tangentengleichung bestimmen - Anstiegswinkel - Ableitung - Rechner - Berechnen - ZeichnenMathProf - Tangente - Normale - Allgemeine Tangentengleichung - Lot zur Tangente - Orthogonale - Steigung einer Tangente - Anstieg der Tangente - Funktionsgleichung einer Tangente - Tangentengleichung bestimmen - Anstiegswinkel - Ableitung - Kurvennormale - Kurventangente - Waagerechte Tangente - Senkrechte Tangente - Rechner - Berechnen - Zeichnen - Steigung
 

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Integer-Funktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen

 

Screenshots weiterer Module von MathProf


MathProf - Logarithmische Funktion - Logarithmusfunktion - Logarithmus - Zeichnen - Eigenschaften - Nullstelle - Tabelle - Werte - Ableiten - Ableitung - Graph - Plotten -   Rechner - Berechnen - Grafisch - Parameter - Strecken - Stauchen - Plotter - Schaubild
MathProf 5.0 - Unterprogramm Parameter der Logarithmusfunktion



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

  
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0