MathProf - Nullstellen - Verfahren - Intervallhalbierung - Bisektionsmethode

MathProf - Mathematik-Software - Nullstellen - Iterationsverfahren

Fachthema: Nullstellen-Iterationsverfahren - Interaktiv

MathProf - Analysis - Programm für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Nullstellen - Iterationsverfahren

Online-Hilfe
für das Modul zur interaktiven Analyse der Methoden, die zur Nullstellenbestimmung mathematischer Funktionen eingesetzt werden.

Es stehen sechs verschiedene (häufig angewandte) Verfahren zur Verfügung, deren Methoden anhand einer dargestellten Funktion analysiert und nachvollzogen werden können.

Die Berechnung der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Durchführung einer interaktiven Operation dar.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Regula falsi - 1. Art - 2. Art - Nullstellen - Nullstellenbestimmung - Allgemeines Iterationsverfahren - Newton-Verfahren - Vereinfachtes Newton-Verfahren - Intervallhalbierung - Bisektion - Verfahren - Bisektionsmethode - Sekanten-Verfahren - Funktion - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen - Plotten

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
 

Nullstellen-Iterationsverfahren - Interaktiv

 

MathProf - Regula falsi - 1. Art - 2. Art - Nullstellen - Nullstellenbestimmung - Allgemeines Iterationsverfahren - Newton-Verfahren - Vereinfachtes Newton-Verfahren - Rechner - Berechnen - Darstellen - Zeichnen - Plotten
Modul Nullstellen-Iterationsverfahren - Interaktiv


 

Unter dem Programmpunkt [Analysis] - [Nullstellen] - Nullstellen-Iterationsverfahren - Interaktiv können Methoden interaktiv analysiert werden, die bei der Nullstellenbestimmung mathematischer Funktionen Anwendung finden.

 

MathProf - Intervallhalbierungsverfahren - Intervallhalbierung - Bisektions-Verfahren - Bisektionsmethode - Sekanten-Verfahren - Funktion - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen - Plotten


Es können folgende Verfahren untersucht werden:

  • Regula falsi 1. Art
  • Regula falsi 2. Art
  • Allgemeines Iterationsverfahren
  • Newton-Verfahren
  • Vereinfachtes Newton-Verfahren
  • Intervallhalbierungsverfahren

Iterationsverfahren dieser Art werden insbesondere dann verwendet, wenn eine analytische Bestimmung der Nullstellen mathematischer Funktionen nicht möglich ist.

Regula falsi 1. und 2. Art (Sekanten-Verfahren):
 
Das Verfahren Regula falsi verwendet die Vorschrift:
 
x2 = x0 – f(x0) · (x1 – x0) / (f(x1) – f(x0))
 
Hierbei wird der Schnittpunkt einer Sekante, die durch die beiden Punkte x0 und x1 verläuft, mit der Abszisse errechnet. Bei jeder Schrittfolge wird entweder x0 oder x1 durch den neu errechneten Abszissenwert ersetzt.
 
Bei Methode 1 (Regula falsi 1. Art) wird stets der zu Anfang verwendete Wert x0 für alle nachfolgenden Iterationen verwendet, bei Methode 2 (Regula falsi 2. Art) hingegen werden die beiden zuletzt ermittelten Näherungswerte eingesetzt, wodurch eine bessere Konvergenzgeschwindigkeit erreicht wird.
 
Allgemeines Iterationsverfahren:
 
Dieses Verfahren benötigt einen Startpunkt an der Stelle x0. Zur Bestimmung von Nullstellen wird die Iterationsvorschrift xn+1 = xn - c·f(xn) verwendet. Der hierbei zu verwendende Wert für Parameter c kann durch die Bedienung des Rollbalkens Parameter c festgelegt werden. Die Wahl des Parameterwerts entscheidet über Konvergenz oder Divergenz der ermittelten Werte bei der entsprechenden Nullstelle.
 
Newton-Verfahren:
 
Das Newton-Verfahren verwendet die Vorschrift:
 
x1 = x0 – f(x0) / f'(x0)
 
Bei diesem Verfahren wird die Kurventangente am Iterationspunkt x0 ermittelt und es wird vorausgesetzt, dass die Funktion in der Umgebung dieser Stelle differenzierbar ist.
 
Vereinfachtes Newton-Verfahren:
 
Bei Anwendung des vereinfachten Newton-Verfahrens wird der Ableitungswert f'(x0) lediglich für den Startwert ermittelt und danach konstant gehalten.
 
Intervallhalbierungsverfahren (Bisektions-Verfahren):
 
Die Bisektionsmethode nach der Vorschrift xm = (x1 + x2)/2 beruht auf der Halbierung eines Ausgangsintervalls, innerhalb dessen die gesuchte Nullstelle liegt. Hierbei wird die Länge des Intervalls kontinuierlich verringert. Dies wird wiederholt, bis nach m Schritten die gewünschte Genauigkeit erreicht wurde.
 
Voraussetzung für die Anwendbarkeit dieser Methode ist, dass die Funktion innerhalb des gewählten Untersuchungsbereichs eine Nullstelle besitzt. Die Bisektionsmethode weist nur langsame Konvergenz auf.
 
Darstellung

Handeln Sie wie nachfolgend beschrieben, um die Iterationsmethodik einzelner Verfahren zu analysieren:
 
  1. Wählen Sie durch die Aktivierung des entsprechenden Kontrollschalters (Regula falsi 1. Art, Regula falsi 1. Art, Allgemeines Verf., Newton, Newton vereinf., Intervallhalbierung) welche der aufgeführten Methoden Sie untersuchen möchten.
     
  2. Funktionen bei welchen das entsprechende Verfahren angewandt werden soll, können Sie in diesem Unterprogramm definieren bzw. aufrufen, indem Sie den Schalter fx bedienen. Geben Sie den entsprechenden Funktionsterm in das Feld mit der Bezeichnung f(x) = ein und bedienen Sie die Schaltfläche OK. Beachten Sie hierbei die geltenden Syntaxregeln. Befinden sich bereits gespeicherte Funktionen in der Bibliothek, so können diese durch einen Doppelklick auf den entsprechenden Eintrag in der Tabelle in das Eingabefeld übernommen werden.
     
  3. Verändern Sie die Anzahl durchzuführender Iterationsschritte durch die Positionierung des zur Verfügung stehenden Rollbalkens Iterationen. Bei Verwendung des allgemeinen Iterationsverfahrens muss durch die Positionierung des Rollbalkens Parameter c zudem noch ein Vorgabewert für den Konstantenwert c festgelegt werden.
     
  4. Möchten Sie die Abszissenwerte gewählter Startpositionen exakt festlegen, so können Sie die Schaltfläche Punkte auf dem Bedienformular nutzen und die entsprechenden Werte im daraufhin erscheinenden Formular eingeben. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  5. Um die Abszissenwerte gewählter Startpositionen mit der Maus zu verändern, klicken Sie in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach links oder nach rechts.
     
  6. Starten Sie bei Bedarf eine Autosimulation mit dem Schalter Simulation, um die Einflüsse der Positionierung von Startwerten zu untersuchen und beenden Sie diese wieder durch einen erneuten Klick auf diese Schaltfläche. Vor dem Start einer Simulation wird Ihnen ein Auswahlformular zur Verfügung gestellt, auf welchem Sie durch die Aktivierung des entsprechenden Kontrollschalters eine Auswahl bzgl. der simulativ zu verändernden Größe treffen können. Hierauf können Sie ggf. den Wert für die zu verwendende Schrittweite einstellen. Ändern Sie diese bei Bedarf und bestätigen Sie mit OK.


Stellt das Programm eine starke Divergenz berechneter Werte fest, so wird die Iteration abgebrochen, wenn sich Iterationswerte außerhalb eines programmintern vorgegebenen Intervalls befinden.

Beachten Sie:
Um eine Analyse durchführen zu können, muss die Funktion innerhalb des gewählten Untersuchungsbereichs eine Nullstelle besitzen!
  

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Bedienformular

 

 
MathProf - Nullstellen - Numerik - Methoden - Verfahren - Iterationsverfahren - Algorithmus - Algorithmen - Newton - Schema - Newton-Verfahren - Numerisch

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 

  • P beschriften: Beschriftung von Startpositionen zur Auffindung von Nullstellen ein-/ausschalten
  • Koordinaten: Darstellung der Koordinatenwertangaben von Startpositionen ein-/ausschalten
 
Allgemein
 
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
 
Weitere Themenbereiche

 
Nullstellen - Iterationsverfahren
Horner - Schema
Kurvendiskussion
 

Weitere Screenshots zu diesem Modul

 

MathProf - Intervallhalbierungsmethode - Newtonverfahren - Approximation - Intervallhalbierungsverfahren - Halbierungsverfahren - Newton Iteration - Näherungswert - Näherungswerte - Rechner - Berechnen
Grafische Darstellung - Beispiel 1

MathProf - Nullstellenberechnung - Tangentenverfahren - Nullstellensuche - Nullstellenbestimmung - Numerische Mathematik - Numerische Verfahren - Numerische Differentiation - Nullstellen-Approximation - Rechner - Berechnen
Grafische Darstellung - Beispiel 2

  MathProf - Nullstellen - Finden - Bestimmen - Bestimmung - Finden - Untersuchen - Untersuchung - Interpolationsverfahren - Interpolationsmethoden - Numerisch - Grafisch - Lösung - Lösen - Approximationsverfahren - Rechner - Berechnen
Grafische Darstellung - Beispiel 3

MathProf - Rechner - BerechnenNullstellensuche - Nullstellenbestimmung - Numerische Mathematik - Numerische Verfahren - Numerische Differentiation - Nullstellen-Approximation - Rechner - Berechnen
Grafische Darstellung - Beispiel 4

  MathProf - Regula falsi - 1. Art - 2. Art - Nullstellen - Nullstellenbestimmung - Allgemeines Iterationsverfahren - Newton-Verfahren - Vereinfachtes Newton-Verfahren - Rechner - Berechnen - Darstellen - Zeichnen - Plotten
Grafische Darstellung - Beispiel 5
 

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden:

Wikipedia - Nullstelle
Wikipedia - Newton-Verfahren
Wikipedia - Gauß-Newton-Verfahren
Wikipedia - Regula falsi
Wikipedia - Bisektion
 

Weitere implementierte Module zum Themenbereich Analysis


MathProf - Taylor Reihen - Taylorreihe - Potenzreihen - Taylor - Reihe - Taylorreihenentwicklung - Potenzreihenentwicklung - Potenzreihendarstellung - Potenzreihe - Taylorsche Reihe - Taylorreihen - Taylorpolynome - Taylorpolynom 2. Grades - Taylorpolynom 3. Grades - Taylorpolynom 4. Grades - Taylorsches Näherungspolynom - Taylor-Approximation - Taylor series - Taylorreihe entwickeln - Potenzreihe entwickeln - Berechnen - Rechner - ZeichnenMathProf - Reihen - Taylor - Taylor-Polynom - Taylorformel - Taylorsche Formel - Berechnen - Entwicklungsstelle - Koeffizienten - Entwicklungspunkt - Taylor-Formel - Taylorpolynom zweiten Grades - Reihenentwicklung - Funktionenreihe - Funktionenreihen - Taylorreihe bestimmen - Taylor-Näherung - Taylorentwickung - Rechner - Zeichnen
 

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen  - Geometrische Lösung quadratischer Gleichungen - Ermittlung ganzrationaler Funktionen - Interaktiv - Interpolation nach Newton - Interaktiv - Interpolation nach Lagrange - Interaktiv - Polynomregression - Interaktiv - Tangente - Normale - Interaktiv - Tangente - Sekante - Interaktiv - Tangente und Normale von externem Punkt - Interaktiv - Simpson-Regel - Keplersche Fassregel - Spline-Interpolation - Spline-Interpolation - Interaktiv - Bézier-Kurven - Astroide - Kardioide - Konstruktion einer Kardioide - Konstruktion einer Hypozykloide - Konchoide - Lemniskate - Cassinische Kurven - Pascalsche Schnecke - Trisektrix - Zweiblatt-Kurve - Konstruktion krummliniger Kurven - Logarithmische Spirale - Konstruktion - Hyperbolische Spirale - Fourier-Analyse (Fast Fourier Transformation - FFT) - Taylor- und Potenzreihen - Interaktiv - Harmonische Synthese - Analyse implizit definierter Gleichungen - Höhenlinien - Konturen von Flächen in expliziter Form - Variante I - Höhenlinien - Konturen von Flächen in expliziter Form - Variante II - Schnittkurven von Flächen in expliziter Form - Zahlenfolgen - Interaktiv II - Rekursive Zahlenfolgen - Interaktiv II - Arithmetische Zahlenfolgen - Interaktiv - Geometrische Zahlenfolgen - Interaktiv - Funktionen in Parameterform - Polarkoordinaten - Funktionen in Polarform - Variante - Tangente - Normale mit Funktionen in Parameterform - Tangente - Normale mit Funktionen in Polarform - Segmentweise definierte Funktionen - Interaktiv - Inverse von Funktionen - Gemeinsame Darstellung von Kurven verschiedener Darstellungsformen - Ermittlung von Funktionsparametern - Funktionsschnittpunkte - Interaktiv - Kettenlinie - Funktionsstetigkeit
 

Screenshots weiterer Module von MathProf


 MathProf - Iterationen - Iterieren - Grenzwert - Schritte - Iteration - Iterationsschleifen - Iterativ - Berechnung - Tabelle - Konvergenz - Grenze - Limit - Abbruch - Parameter - Parameter - Numerisch - Rechner - Berechnen - Funktion
MathProf 5.0 - Unterprogramm Iterationen



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0