MathProf - Durchschnitt - Geometrisches Mittel - Harmonisches Mittel

MathProf - Mathematik-Software - Mittelwerte | Quadratische Mittel | Arithmetisches Mittel

Fachthemen: Mittelwerte - Quadratischer Mittelwert - Arithmetischer Mittelwert - Logarithmischer Mittelwert - Geometrischer Mittelwert - Harmonischer Mittelwert

MathProf - Algebra - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Mittelwerte | Quadratische Mittel | Arithmetisches Mittel

Online-Hilfe
für das Modul zur grafischen Veranschaulichung der Zusammenhänge
bzgl. den Mittelwerten reeller Zahlen.

In diesem Unterprogramm erfolgt neben der grafischen Darstellung entsprechender Sachverhalte unter anderem das Berechnen folgender Mittelwerte: Das quadratische Mittel, das arithmetische Mittel (Durchschnitt), das logarithmische Mitttel, das geometrische Mittel und das harmonische Mittel.


Das Berechnen der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Mittelwerte - Mittelwert - Logarithmischer Mittelwert - Quadratischer Mittelwert - Arithmetischer Mittelwert - Geometrischer Mittelwert - Harmonischer Mittelwert - Logarithmisches Mittel - Quadratisches Mittel - Durchschnitt berechnen - Durchschnittswert berechnen - Durchschnittlich - Durchschnitt - Durchschnittswert - Ermitteln - Herleitung - Beweis - Ausrechnen - Durchschnittsberechnung - Arithmetisches Mittel - Harmonisches Mittel - Geometrisches Mittel - Mittelwert zweier Zahlen - Mittelwertbildung - Lagemaß - Beispiel - Eigenschaften - Zahlen - Graph - Formel - Rechner - Symbol - Berechnen - Grafisch - Plotten - Begriff - Begriffe - Was ist - Weshalb - Warum - Welche - Welcher - Welches - Wodurch - Einführung - Erklärung - Einfach erklärt - Bedeutung - Was bedeutet - Beschreibung - Klassenarbeit - Klassenarbeiten - Mathe - Mathematik - Anwendungsaufgaben - Definition - Arbeitsblatt - Arbeitsblätter - Unterrichtsmaterial - Unterrichtsmaterialien - Lernen - Erlernen - Übungsaufgaben - Üben - Übungen - Lösungen - Aufgaben - Bilder - Darstellung - Berechnung - Bestimmung - Darstellen - Mittelwert grafisch darstellen - Mittelwerte berechnen

  
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Mittelwerte


 MathProf - Mittelwerte - Logarithmischer Mittelwert - Quadratischer Mittelwert - Arithmetischer Mittelwert - Geometrischer Mittelwert - Harmonischer Mittelwert - Logarithmisches Mittel - Quadratisches Mittel - Durchschnitt - Durchschnittswert - Rechner - Berechnen - Darstellen
Modul Mittelwerte



Das kleine Unterprogramm [Algebra] - [Sonstiges] - Mittelwerte ermöglicht die grafische Veranschaulichung der Zusammenhänge bezüglich der Mittelwerte reeller Zahlen.

 

MathProf - Quadratisches Mittel - Arithmetisches Mittel - Logarithmisches Mittel - Geometrisches Mittel - Harmonisches Mittel - Mittelwert - Rechner - Berechnen - Durchschnitt berechnen - Durchschnittswert berechnen - Zahlen - Definition - Grafisch - Durchschnittlich - Ausrechnen - Durchschnittsberechnung - Mittelwert zweier Zahlen - Lagemaß - Beispiel - Eigenschaften


In diesem Modul werden die Mittelwerte zweier reeller Zahlen a und b auf einem Zahlenstrahl dargestellt. Es sind dies:
 

  • Quadratisches Mittel (quadratischer Mittelwert)

  • Arithmetisches Mittel (arithmetischer Mittelwert)

  • Logarithmisches Mittel (logarithmischer Mittelwert)

  • Geometrisches Mittel (geometrischer Mittelwert bzw. mittlere Proportionale)

  • Harmonisches Mittel (harmonischer Mittelwert)


Ist der Wert der Zahl a 0, so kann festgestellt werden:

 

Quadratisches Mittel > Arithmetisches Mittel > Logarithmisches Mittel > Geometrisches Mittel > Harmonisches Mittel
 

Beschreibung

  
Der Durchschnitt (Durchschnittswert) bzw. der Mittelwert mehrerer Zahlen wird durch das Addieren aller Zahlenwerte und das anschließende Dividieren dieser durch deren Anzahl errechnet (siehe nachf. arithmetisches Mittel).
 

Nachfolgend aufgeführt sind Formeln und Eigenschaften der in der Statistik verwendeten Mittelwerte.

 

Arithmetisches Mittel (arithmetischer Mittelwert):

 

Arithmetisches Mittel - Gleichung
Das arithmetische Mittel (der arithmetische Mittelwert) ist ein Lagemaß einer Häufigkeitsverteilung. Es bildet sich aus dem Quotient der Summe aller Beobachtungswerte xi und der Beobachtungszahl n.

 

Harmonisches Mittel (harmonischer Mittelwert):

 

Harmonisches Mittel - Gleichung
Das harmonische Mittel (der harmonische Mittelwert) ist ein Mittelwert einer Menge von Zahlen, der dazu verwendet wird, um den Mittelwert von Verhältniszahlen (den Quotient zweier Größen) zu berechnen.

 

Geometrisches Mittel (geometrischer Mittelwert):

 

Geometrisches Mittel - Gleichung
Das geometrische Mittel (der geometrische Mittelwert) ist der Mittelwert, der mit Hilfe der n-ten Wurzel aus dem Produkt der n betrachteten positiven Zahlen berechnet wird. Es ist stets kleiner oder gleich dem Wert des arithmetischen Mittels.

 

Quadratisches Mittel (quadratischer Mittelwert):

 

Quadratisches Mittel - Gleichung

 
Das quadratische Mittel (der quadratische Mittelwert) ist der Mittelwert, der als Quadratwurzel des Quotienten aus der Summe der Quadrate der beachteten Zahlen sowie ihrer Anzahl berechnet wird.
 

Logarithmisches Mittel (logarithmischer Mittelwert):

 

Logarithmisches Mittel - Gleichung
Das logarithmische Mittel (der logarithmische Mittelwert) ist eine streng monoton wachsende Funktion. Es liegt zwischen dem arithmetischen und geometrischen Mittel. Es findet Anwendung, wenn über große Bereiche hinweg zu mitteln ist.
 

 

Darstellung

 

Untersuchungen zu diesem Fachthema können Sie durchführen, indem Sie Folgendes ausführen:
 

  1. Zur Veränderung der Werte der Zahlen a oder b bedienen Sie die Schaltfläche Werte und geben die entsprechenden im daraufhin erscheinenden Formular ein. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     

  2. Möchten Sie die Positionen der Anfasspunkte A oder B (Werte der Zahlen a oder b) mit der Maus verändern, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach links oder nach rechts.
     

  3. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die zu verwendende Schrittweite einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

 

Bedienformular

 

MathProf - Arithmetisches Mittel - Quadratischer Mittelwert - Arithmetischer Mittelwert - Logarithmischer Mitttelwert - Geometrischer Mittelwert - Harmonischer Mittelwert


Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • Punkte: Punktbeschriftung ein-/ausschalten
  • Werte: Anzeige der Werte der Zahlen A und B ein-/ausschalten
 
Arbeitsblätter - Unterrichtsmaterialien - Nutzung zu Unterrichtszwecken

 
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.

Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.

 

Aufgaben - Lernen - Üben - Übungen

  
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema der Mathematik. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.

Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Mathe-Anwendungsaufgaben genutzt werden.

Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.

Eine mathematische Herleitung dient dazu, zu erklären, weshalb es zu einer Aussage kommt. Derartige Folgerungen sind unter anderem dazu dienlich, um zu verstehen, weshalb eine Formel bzw. Funktion Verwendung finden kann. Dieses Modul kann auch in diesem Fall hilfreich sein und ermöglicht es durch dessen Nutzung oftmals, einer entsprechenden Herleitung bzw. einem mathematischen Beweis zu folgen, oder einen Begriff zum entsprechenden Fachthema zu erklären.

Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.

  

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Beispiel

 

Werden die Zahlen a = 4 und b = 14 nach einer Bedienung der Schaltfäche Werte festgelegt, so gilt bzgl. derer Mittelwerte:

 

Quadratisches Mittel: 10,296

Arithmetisches Mittel: 9

Logarithmisches Mittel: 7,982

Geometrisches Mittel: 7,483

Harmonisches Mittel: 6,222

 

Weitere Screenshots zu diesem Modul

 

 MathProf - Mittelwerte - Logarithmischer Mittelwert - Quadratischer Mittelwert - Arithmetischer Mittelwert - Geometrischer Mittelwert - Harmonischer Mittelwert - Logarithmisches Mittel - Quadratisches Mittel - Durchschnitt - Durchschnittswert - Rechner - Berechnen
Grafische Darstellung - Beispiel 1

MathProf - Arithmetisches Mittel - Harmonisches Mittel - Geometrisches Mittel - Quadratisches Mittel - Durchschnitt - Mittelwert - Lagemaße - Lageparameter - Mittelwertbildung - Formel - Rechner - Symbol - Berechnen - Grafisch - Bilder - Berechnung - Bestimmung - Darstellen - Mittelwert grafisch darstellen - Mittelwerte berechnen
Grafische Darstellung - Beispiel 2

   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Mittelwert zu finden.

 
Weitere implementierte Module zum Themenbereich Algebra


MathProf - ggT - kgV - Größter gemeinsamer Teiler - Kleinstes gemeinsames Vielfaches - Ganze Zahlen - Zahl - Natürliche Zahlen - Analysieren - Teilbarkeit - Zahlen zerlegen - Zahlzerlegung - Teiler - Teilermenge - Ganzzahlig - Ganzzahlige Division - Ganzzahldivision - Teilerzahl - Teileranzahl - Teilermengen - Teilersumme - Teilerfremd - Gemeinsamer Teiler - Ermitteln - kgV und ggT - ggT und kgV - kgV zweier Zahlen - Zahlzerlegungen - Teiler und Vielfache - Teilerfremde Zahlen - Rechner - BerechnenMathProf - ggT zweier Zahlen - ggT berechnen - kgV berechnen - Mathematik - Zwei Zahlen - Zahlen - Vielfache - Teilbar - Eigenschaften - Finden - Gerade Zahlen - Ungerade Zahlen - Vielfachenmenge - Von - Vielfache berechnen - Vielfache und Teiler - Vielfaches einer Zahl - Addieren - Addition - Teilen - Multiplizieren - Multiplikation - Quotient - Produkt - Summe - Rest - Größte gemeinsame Teiler - Gemeinsame Vielfache - Kleinste gemeinsame Vielfache - Euklidischer Algorithmus - Zerlegung von Zahlen - Rechner - Berechnen
 

Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Komplexes Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL-Gleichungssystem - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch

 

Screenshots weiterer Module von MathProf


MathProf - Regression - Auswertung - Analyse - Regressionsanalyse - Lineare Regression - Nichtlineare Regression - Quadratische Regression - Korrelationskoeffizient   - Regressionskoeffizient - Quadratisches Mittel - Mittlerer Fehler - Variationskoeffizient - Stichprobenvarianz - Logarithmische Regression - Reziproke Regression - Exponentielle Regression - Trigonometrische Regression - Kubische Regression - Berechnen - Rechner - Plotten - Plotter - Grafik - Grafisch - Tabelle - Formeln - Darstellen - Diagramm
MathProf 5.0 - Unterprogramm Regression



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

  
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0