MathProf - Logarithmische Spirale - Konstruktion - Konstruieren

MathProf - Mathematik-Software - Logarithmische Spirale - Konstruktion

Fachthema: Logarithmische Spirale - Konstruktion

MathProf - Analysis - Programm für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Logarithmische Spirale - Konstruktion

Online-Hilfe
für das Modul zur interaktiven Untersuchung der Entstehung logarithmischer Spiralen.

Das Berechnen der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Logarithmische Spirale - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
 

Logarithmische Spirale - Konstruktion

 

MathProf - Logarithmische Spirale - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten
Modul Logarithmische Spirale - Konstruktion



Das Unterprogramm [Analysis] - [Spirallinien] - Logarithmische Spirale - Konstruktion ermöglicht eine Analyse der Zusammenhänge bei der Konstruktion einer logarithmischen Spirale.

 

MathProf - Logarithmische Spirale - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten

    
Die Methode die zur Konstruktion einer logarithmischen Spirale in diesem Unterprogramm verwendet wird, sei nachfolgend beschrieben:
 
Grundlage ist ein Rechteck, bei welchem die Seitenverhältnisse den Gesetzen des Goldenen Schnitts entsprechen. Dessen Seitenverhältnisse betragen demnach p = a/b = (a+b)/a = 1/2 (Ö5 + 1) = 1,61803 bzw. σ = b/a = 1/2 (Ö5 – 1) = 0,61803 mit a = BC und b = AB. Dieses Rechteck wird so positioniert, dass zwei der Eckpunkte (A und C) dessen auf der Abszisse, sowie einer derer auf der Ordinate liegen.

Hieraus können die entsprechend benötigten Koordinatenwerte der Ortspunkte des Vierecks ermittelt werden. Daraufhin wird der längeren Seite des Rechtecks ein Quadrat aufgesetzt. Hierdurch entsteht wiederum ein Rechteck, welches dem Gesetz des Goldenen Schnitts genügt (entstanden aus dem bereits vorhandenen Rechteck und dem aufgesetzten Quadrat). Diesem wird nach derselben Vorschrift erneut ein Quadrat aufgesetzt, etc.

Durch Wiederholung dieses Vorgangs kann festgestellt werden, dass Eckpunkte aller aufgesetzten Quadrate auf der logarithmischen Spirale liegen. Bei jeder dieser Wiederholungen sind es die Eckpunkte des Quadrats, welche um 90° gegen den Uhrzeigersinn gegenüber den Eckpunkten des zuletzt aufgesetzten Quadrats gedreht sind.

 

Darstellung

 
Die o.a. Zusammenhänge, bei Anwendung dieser Konstruktion, können Sie folgendermaßen untersuchen:
 
Durch die Bedienung des Rollbalkens Anz. Quadrate legen Sie fest, wieviele der oben beschriebenen Schritte zu durchlaufen sind. Bei einer Benutzung des Rollbalkens Winkelpos. wird der Verlauf der Kurve bis zum entsprechenden Eckpunkt des Quadrats ausgegeben. Wird der Rollbalken Streckung bedient, so kann mit diesem der Maßstab der gesamten Darstellung durch Ausführung einer Streckung verändert werden.
 
Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. den Wert für die zu verwendende Verzögerung einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Simulation wieder durch eine Bedienung der Schaltfläche Sim. Stop.
 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Bedienformular

 

MathProf - Logarithmische Spirale - Quadrate - Viereck - Punkte - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 
  • P beschriften: Punktbeschriftung verwendeter Punkte ein-/ausschalten
  • Koordinaten: Anzeige der Koordinatenwerte verwendeter Punkte ein-/ausschalten
  • Vierecke darstellen: Darstellung aller zur Konstruktion verwendeter Vierecke ein-/ausschalten
  • Goldenes Viereck: Darstellung des Goldenen Vierecks (des ersten Rechtecks welches den Gesetzen des Goldenen Schnitts genügt) ein-/ausschalten
  • Kurve hervorheben: Linienstärke der Spirale normal/fett
 
Allgemein
 
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
 
Weitere Themenbereiche
 
Archimedische Spirale
Logarithmische Spirale
Funktionen in Polarform
 
Beispiel
 
Wird durch die Positionierung der entsprechenden Rollbalken die Anzahl zu verwendender Quadrate auf 3, die Winkelposition auf den Wert 2 und eine Streckung der Darstellung um den Faktor 2 festgelegt, so werden folgende Werte ausgegeben:
 
Die Koordinatenwerte des Goldenen Vierecks, welches durch die Punkte A, B, C und D beschrieben wird, lauten:
 
A (1,236 / 0)
B (0 / 2)
C (-3,236 / 0)
D (-2 / 2)
 
Für die Fläche des durch diese Punkte begrenzten Vierecks wird angezeigt: A = 8,944 FE.
 
Die Gleichung der dargestellten Spirale ermittelt das Programm mit:
 
r(j) = 5,82·e0,306j
 
Weitere Screenshots zu diesem Modul

 

MathProf - Logarithmische Spirale - Quadrate - Viereck - Punkte - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten
Grafische Darstellung - Beispiel 1

MathProf - Logarithmische Spirale - Quadrate - Viereck - Punkte - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten
Grafische Darstellung - Beispiel 2

MathProf - Logarithmische Spirale - Konstruktion - Konstruieren - Goldener Schnitt - Gleichung - Formel - Berechnen - Darstellen - Zeichnen - Plotten
Grafische Darstellung - Beispiel 3
    

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Logarithmische Spiralezu finden.

 
Weitere implementierte Module zum Themenbereich Analysis


MathProf - Taylor Reihen - Taylorreihe - Potenzreihen - Taylor - Reihe - Taylorreihenentwicklung - Potenzreihenentwicklung - Potenzreihendarstellung - Potenzreihe - Taylorsche Reihe - Taylorreihen - Taylorpolynome - Taylorpolynom 2. Grades - Taylorpolynom 3. Grades - Taylorpolynom 4. Grades - Taylorsches Näherungspolynom - Taylor-Approximation - Taylor series - Taylorreihe entwickeln - Potenzreihe entwickeln - Berechnen - Rechner - ZeichnenMathProf - Reihen - Taylor - Taylor-Polynom - Taylorformel - Taylorsche Formel - Berechnen - Entwicklungsstelle - Koeffizienten - Entwicklungspunkt - Taylor-Formel - Taylorpolynom zweiten Grades - Reihenentwicklung - Funktionenreihe - Funktionenreihen - Taylorreihe bestimmen - Taylor-Näherung - Taylorentwickung - Rechner - Zeichnen
 

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen  - Geometrische Lösung quadratischer Gleichungen - Ermittlung ganzrationaler Funktionen - Interaktiv - Interpolation nach Newton - Interaktiv - Interpolation nach Lagrange - Interaktiv - Polynomregression - Interaktiv - Nullstellen - Iterationsverfahren - Interaktiv - Tangente - Normale - Interaktiv - Tangente - Sekante - Interaktiv - Tangente und Normale von externem Punkt - Interaktiv - Simpson-Regel - Keplersche Fassregel - Spline-Interpolation - Spline-Interpolation - Interaktiv - Bézier-Kurven - Astroide - Kardioide - Konstruktion einer Kardioide - Konstruktion einer Hypozykloide - Konchoide - Lemniskate - Cassinische Kurven - Pascalsche Schnecke - Trisektrix - Zweiblatt-Kurve - Konstruktion krummliniger Kurven - Hyperbolische Spirale - Fourier-Analyse (Fast Fourier Transformation - FFT) - Taylor- und Potenzreihen - Interaktiv - Harmonische Synthese - Analyse implizit definierter Gleichungen - Höhenlinien - Konturen von Flächen in expliziter Form - Variante I - Höhenlinien - Konturen von Flächen in expliziter Form - Variante II - Schnittkurven von Flächen in expliziter Form - Zahlenfolgen - Interaktiv II - Rekursive Zahlenfolgen - Interaktiv II - Arithmetische Zahlenfolgen - Interaktiv - Geometrische Zahlenfolgen - Interaktiv - Funktionen in Parameterform - Polarkoordinaten - Funktionen in Polarform - Variante - Tangente - Normale mit Funktionen in Parameterform - Tangente - Normale mit Funktionen in Polarform - Segmentweise definierte Funktionen - Interaktiv - Inverse von Funktionen - Gemeinsame Darstellung von Kurven verschiedener Darstellungsformen - Ermittlung von Funktionsparametern - Funktionsschnittpunkte - Interaktiv - Kettenlinie - Funktionsstetigkeit
 

Screenshots weiterer Module von MathProf


 MathProf - Iterationen - Iterieren - Grenzwert - Schritte - Iteration - Iterationsschleifen - Iterativ - Berechnung - Tabelle - Konvergenz - Grenze - Limit - Abbruch - Parameter - Parameter - Numerisch - Rechner - Berechnen - Funktion
MathProf 5.0 - Unterprogramm Iterationen



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0