MathProf - Komplexe Gleichungssysteme - KGS - Komplexes LGS - Komplex

MathProf - Mathematik-Software - Komplexes Gleichungssystem | Matrix | Lösungen berechnen

Fachthema: Komplexes Gleichungssystem

MathProf - Algebra - Software für interaktive Mathematik zum Lösen verschiedenster numerischer, wie grafischer Aufgaben sowie zur Visualisierung relevanter Sachverhalte mittels technischer Simulationen für alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Komplexes Gleichungssystem | Matrix | Lösungen berechnen

Online-Hilfe
für das Modul zur Berechnung der Lösungen von linearen Gleichungssystemen komplexer Zahlen bis 10. Grades.

Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben, sind implementiert.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Komplexes Gleichungssystem - Lineares Gleichungssystem komplexer Zahlen - Gleichungssystem - Komplex - Lösen komplexer Gleichungssysteme - Gleichungen - Erklärung - Beschreibung - Definition - System - KGS - Komplexes LGS - Rechner - Berechnen - Komplexe GS - Lösungen
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
  

Komplexes Gleichungssystem (KGS)

 

MathProf - KGS - Komplexes Gleichungssystem - Komplexe Gleichungssysteme - Lineares Gleichungssystem komplexer Zahlen - Komplex - Lösen komplexer Gleichungssysteme - Koeffizienten - Rechner - Beispiel - Berechnen
Modul Komplexes Gleichungssystem



Im Programmteil [Algebra] - [Sonstige Gleichungssysteme] - Komplexes Gleichungssystem können Lösungen komplexer Gleichungssysteme ermittelt werden.

 

MathProf - Komplexes Gleichungssystem - Koeffizienten - Rechner - Beispiel - Berechnen

 

Komplexe Gleichungssysteme werden häufig in der Elektrotechnik benötigt, um Berechnungen für Wechselstromnetzwerke durchführen zu können.

Mit Hilfe dieses Unterprogramms können die Lösungen komplexer Gleichungssysteme (KGS) bis 10. Grades nachfolgend aufgeführter Form ermittelt werden:
 

ar(1,1) · xr(1) + ... + ar(1,n) · xr(n) = br(1)

ai(1,1) · xi(1) + ... + ai(1,n) · xi(n) = bi(1)

....

....

....

ar(n,1) · xr(1) + ... + ar(n,n) · xr(n) = br(n)

ai(n,1) · xi(1) + ... + ai(n,n) · xi(n) = bi(n)
 

 

Berechnung

 
Vor der Eingabe von Zahlenwerten muss der Grad des Gleichungssystems durch die Benutzung des Steuerelements Grad des Gleichungssystems definiert werden. Bei jeder Bedienung dieses Steuerelements werden alle Eingaben gelöscht.

Nach der Eingabe der entsprechenden, reellen und imaginären Koeffizientenwerte (linke Seite) und der Absolutglieder (rechte Seite), sowie einer Bedienung des Schalters Berechnen, werden die Lösungen des Systems ausgegeben. Wird mit Hilfe des eingesetzten Verfahrens keine Lösung gefunden, so erhalten Sie eine entsprechende Meldung.

Hinweis:

Es gilt darauf zu achten, dass das zu berechnende Gleichungssystem vor einer Eingabe der Koeffizientenwerte auf die oben aufgeführte Form gebracht werden muss (alle Absolutglieder des KGS müssen rechts des Gleichheitszeichens stehen).

 

Allgemein

 

Über den Menüpunkt Datei - Koeffizienten speichern können Sie die Koeffizienten des KGS speichern und bei Bedarf über den Menüpunkt Datei - Koeffizienten laden wieder laden.

 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Weitere Themenbereiche

 

Lineares Gleichungssystem

Gaußscher Algorithmus

Unterbestimmtes lineares Gleichungssystem

Überbestimmtes lineares Gleichungssystem

 

Beispiel


Gegeben sei ein Wechselspannungsnetz mit 5 Knoten, welches in nachfolgend dargestellter Form konzipiert ist und zu berechnen gilt:
 

MathProf - Komplexes Gleichungssystem - Wechselspannung

 
Unter Beachtung der Regeln der Knotenspannungsanalyse kann dieses Netz durch ein komplexes Gleichungssystem mit vier Unbekannten, wie folgt beschrieben werden:


Komplexes Gleichungssystem Matrix

Zudem seien bekannt:

Sinusförmige Frequenz: f = 50Hz

Kreisfrequenz w = 2·π·f = 314 1/s

 

Netzspannung: U = 220V (Amplitudenwert E(t) = 314 V)

Widerstände R1 = 100 Ω und R2 = 100 Ω

Kapazitäten: C1 = 0,1mF, C2 = 0,1mF und C3 = 0,1mF

Induktionen: L1 = 0,5H und L2 = 0,5H

Stromquelle: Imax = 3140 mA

Aufgabe:
 

Es gilt, die 4 Knotenspannungen U1, U2, U3 und U4 mittels der gegebenen Daten errechnen zu lassen.
 

Um das oben aufgeführte, komplexe Gleichungssystem mit Nutzung numerischer Zahlenwerte aufstellen zu können, wird die zahlenmäßige Größe jedes einzelnen Leitwerts (in der Maßeinheit MilliSiemens mS) ermittelt.

Komplexes Gleichungssystem - Komponenten

Nach der Errechnung der Einzelkomponenten kann folgendes Gleichungssystem 4. Grades aufgestellt werden:


Komplexes Gleichungssystem - Matrix

Bei Festlegung des Grades des Systems auf 4 und der Eingabe der Koeffizientenwerte in die Tabelle Koeffizienten:
 

 Re1 10 0 0 0
 Im1 0,3142 -0,3142 0 0
 Re2 0 10 -10 0
 Im2 -0,3142 -6,0558 0 0
 Re3 0 -10 10 0
 Im3 0 0 0,3142 -0,3142
 Re4 0 0 0 0
 Im4 0 0 -0,3142 -5,7416


sowie der Eingabe der nachfolgend aufgeführten Koeffizienten in die Tabelle Absolutglieder

3140

0

0

0

0

0

0

0
 

ermittelt das Programm nach der Bedienung der Schaltfläche Berechnen für die Lösungen des KGS:
 

z1 = 312,845 - 9,831 i

z2 = -4,124 + 7,318 i

z3 = 0,0005 + 0,0003 i

z4 = -0,0003 - 0,0001 i
 

Die Real- und Imaginärteile der komplexen Lösungen entsprechen den gesuchten Knotenspannungen, wie nachfolgend aufgeführt:
 

Spannung Realteil Imaginärteil
U1 312,845 V -9,831 V
U2 -4,124 V 7,318 V
U3 0,0005 V 0,0003 V
U4 -0,0003 V -0,0001 V
 
 
Weitere Screenshots zu diesem Modul

 

MathProf - KGS - Komplexes Gleichungssystem - Komplexe Gleichungssysteme - Lineares Gleichungssystem komplexer Zahlen - Komplex - Lösen komplexer Gleichungssysteme - Koeffizienten - Rechner - Beispiel - Berechnen
Beispiel 1

MathProf - Komplexes LGS - Komplexes GS - System - KGS - Komplexes LGS - Komplexe GS - Knotenspannung - Schaltbild - Lösungen - Koeffizienten - Rechner - Beispiel - Berechnen
Beispiel 2

MathProf - Gleichungssystem - Komplexe Gleichungssysteme - Koeffizienten - Determinante - Matrix - Rechner - Unbekannte - KGS - Komplexe - Zahlen - Beispiel
Beispiel 3

   
Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
  
Weitere implementierte Module zum Themenbereich Algebra


MathProf - Differentialgleichung - Differentialgleichungen - Numerische Verfahren - Sukzessive Approximation - Schrittweise Annäherung - DGL - Numerische Lösung - Differentialgleichung 1. Ordnung - Lösen - DGL 1. Ordnung - Differenzengleichung - Lineare Differentialgleichung - Nichtlineare DGL - ODE - Lineare DGL 1. Ordnung - Rechner - BerechnenMathProf - DGL - Quadratische DGL - Quadratische Differentialgleichung - Differentialgleichung erster Ordnung - Gewöhnliche Differentialgleichung - Gewöhnliche DGL - Gewöhnliche DGL 1. Ordnung - Lineare homogene DGL - Lineare homogene DGL 1. Ordnung - Lineare Differenzengleichung - Lineare DGL - Nichtlineare Differentialgleichung - Rechner - Berechnen
 

Cramersche Regel - Matrizen - Lineares Gleichungssystem - Gauß'scher Algorithmus - Unterbestimmtes lineares Gleichungssystem - Überbestimmtes lineares Gleichungssystem - Lineare Optimierung - Grafische Methode - Lineare Optimierung - Simplex-Methode - Gleichungen - Gleichungen 2.- 4. Grades - Ungleichungen - Prinzip - Spezielle Gleichungen - Richtungsfelder von DGL 1. Ordnung - Interaktiv - DGL 1. Ordnung (Differentialgleichungen) - DGL n-ter Ordnung (Differentialgleichungen) - DGL - Gleichungssystem - Mengenelemente - Venn-Diagramm - Zahluntersuchung - Bruchrechnung - Primzahlen - Sieb des Eratosthenes - Taschenrechner - Langarithmetik - Einheitskreis komplexer Zahlen - Schreibweisen komplexer Zahlen - Berechnungen mit komplexen Zahlen - Addition komplexer Zahlen - Multiplikation komplexer Zahlen - Taschenrechner für komplexe Zahlen - Zahlen I - Zahlen II - Zahlensysteme - Zahlumwandlung - P-adische Brüche - Bruch - Dezimalzahl - Kettenbruch - Binomische Formel - Addition - Subtraktion - Irrationale Zahlen - Wurzellupe - Dezimalbruch - Mittelwerte

 

Screenshots weiterer Module von MathProf


MathProf - Unterbestimmtes LGS - Gleichungssystem - Unterbestimmt - LGS - System - Lösen - Pseudolösungen - Unterbestimmtes Gleichungssystem - Lösen - Lösungen - Rechner - Berechnen - Lösungsmenge
MathProf 5.0 - Unterprogramm Unterbestimmtes lineares Gleichungssystem



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0