MathProf - Kettenlinie - Kettenlinien - Bestimmen - Bogen - Traktrix

MathProf - Mathematik-Software - Kettenlinie

Fachthema: Kettenlinie

MathProf - Analysis - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Software - Mathematik für Schule, Studium und Wissenschaft - Kettenlinie

Online-Hilfe
für das Modul, mit dem Untersuchungen mit Kurven durchgeführt werden können, die als Kettenlinien bezeichnet werden.

Das Berechnen der Werte erforderlicher Größen erfolgt bei Ausgabe der grafischen Darstellung zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Kettenlinie - Kettenlinien - Bestimmen - Bogen - Traktrix - Funktion - Länge - Formel - Gleichung - Konstruieren - Länge - Mathematik - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
 

Kettenlinie

 

MathProf - Kettenlinie - Kettenlinien - Bestimmen - Bogen - Traktrix - Funktion - Länge - Formel - Gleichung - Konstruieren - Länge - Mathematik - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen
Modul Kettenlinie


 

Bei Verwendung des kleinen Unterprogramms [Analysis] - Parameteranalyse spez. Funktionen - Kettenlinie können Untersuchungen mit Kurven durchgeführt werden, welche als Kettenlinien bezeichnet werden.

 

MathProf - Kettenlinie - Kettenlinien - Bestimmen - Bogen - Traktrix - Funktion - Länge - Formel - Gleichung - Konstruieren - Rechner - Berechnen

 

Die Kurve, die eine zwischen zwei Punkten frei hängende Kette beschreibt, scheint auf den ersten Blick eine Parabel zu sein. Sogar Galileo Galilei hielt sie dafür. 1646 konnte der damals erst siebzehnjährige Christian Huygens (1629-1695) beweisen, dass dies nicht sein kann, ohne jedoch die richtige Funktionsgleichung für die Kurve zu finden.
 
Im Jahre 1690 stellte Jakob Bernoulli die Herausforderung in den Raum: "Man finde die Kurve, die von einer an zwei festen Punkten frei hängenden Kette angenommen wird". Im darauffolgenden Jahr wurden drei unabhängig voneinander gefundene richtige Lösungen publiziert. Von Christian Huygens, Gottfried Wilhelm Leibniz und Johann Bernoulli.

Alle drei kamen zu der Erkenntnis, dass die Linie eine Funktion der Form f(x) = (ex+e -a·x)/(2·a) = a·cosh(x/a) ist, also die Summe einer Exponentialfunktion und ihres Kehrwertes (bzw. ihrer Spiegelung an der y-Achse). Eine Kurve dieser Art wird als Kettenlinie (Traktrix) bezeichnet.
 
Das Programm stellt sowohl die Kettenlinie f(x) = a·cosh(x/a) als auch eine Parabel y = x²/2a+a dar, an welche sich die Kettenlinie in der Nähe des tiefsten Punkts S anschmiegt. Es können nicht die eigentlichen Aufhängepunkte der Kette positioniert werden, sondern es wird davon ausgegangen, dass diese sich in gleicher Höhe befinden. A und B sind wandernde Punkte auf den achsensymmetrischen Exponentialfunktionen. Außerdem wird eine Traktrix (Schleppkurve) dargestellt, deren Evolute (Menge aller Krümmungsmittelpunkte) die Kettenlinie ist.
 
Darstellung

Gehen Sie folgendermaßen vor, um Untersuchungen mit diesem Unterprogramm durchzuführen:
 
  1. Mittels der Positionierung des Schiebereglers Parameter a verändern Sie den Wert für Parameter a der Funktion und können somit dessen Einfluss analysieren.
     
  2. Möchten Sie die Abszissenwerte der Punkte A oder B exakt festlegen, so können Sie die Schaltfläche Punkte auf dem Bedienformular nutzen und die entsprechenden Werte im daraufhin erscheinenden Formular eingeben. Aktivieren Sie hierfür zuvor das Kontrollkästchen Punkt. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Soll die Lage eines Fangpunkts mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste nach rechts oder nach links.
     
  4. Durch eine Aktivierung des Kontrollkästchens Tangente in A bzw. Tangente in B legen Sie fest, ob das Programm die Tangenten an die Kettenlinie in den Punkten A oder B darstellen soll. Wird Kontrollkästchen Traktrix aktiviert, so wird die Traktrix ausgegeben. Wird das Kontrtollkästchen Parabel aktiviert, so stellt das Programm die Parabel dar, an welche sich die Kettenlinie in der Nähe des tiefsten Punkts S anschmiegt.
     
  5. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
 
Bedienformular
 
MathProf - Kettenlinie - Kettenlinien - Bestimmen - Bogen - Traktrix - Funktion - Länge - Formel - Gleichung - Konstruieren - Rechner - Berechnen

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
 
  • P beschriften: Beschriftung von Punkten ein-/ausschalten
  • Koordinaten: Ausgabe der Koordinatenwerte von Punkten ein-/ausschalten
 
Allgemein
 
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
 
Weitere Themenbereiche
 
Mathematische Funktionen I
 
Beispiel
 
Wird Parameter a durch eine Positionierung des dafür zur Verfügung stehenden Rollbalkens auf den Wert a = 3 eingestellt, und werden die Abszissenwerte der Punkte A und B auf x = -4 sowie x = 4 festgelegt, so gibt das Programm nach einer Aktivierung der Kontrollkästchen Tangente in A, Tangente in B, Traktrix und Parabel aus:


Gleichung der dargestellten Kettenlinie: f(x) = 3·COS(X/3)
Gleichung der dargestellten Parabel: f(x) = 0,16667·X²+3
 
Koordinatenwerte der Punkte A und B:
 
A (-4 / 6,086)
B (4 / 6,086)
 
Scheitelpunkt der Kettenlinie: S (0 / 3)
 
Länge des Bogens AS: 5,295
Länge des Bogens SB: 5,295
Länge des Bogens AB: 10,59
 
Gleichung der Tangente durch Punkt A: Y = -1,765·X-0,974
Gleichung der Tangente durch Punkt B: Y = 1,765·X-0,974
 
Koordinatenwerte der Punkte, welche auf der Traktrix liegen und Tangentialpunkte der Kettenlinie in den Punkten A und B sind:
 
E1 (-1,39 / 1,479)
E2  (1,39 / 1,479)
 
Arbeitsblätter - Unterrichtsmaterialien - Nutzung zu Unterrichtszwecken

 
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.

Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.

 

Aufgaben - Lernen - Üben - Übungen

   
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema der Mathematik. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.

Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im Mathe-Leistungskurs (LK).
 

Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.

Eine mathematische Herleitung dient dazu, zu erklären, weshalb es zu einer Aussage kommt. Derartige Folgerungen sind unter anderem dazu dienlich, um zu verstehen, weshalb eine Formel bzw. Funktion Verwendung finden kann. Dieses Modul kann auch in diesem Fall hilfreich sein und ermöglicht es durch dessen Nutzung oftmals, einer entsprechenden Herleitung bzw. einem mathematischen Beweis zu folgen, oder einen Begriff zum entsprechenden Fachthema zu erklären.

Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit. 

  
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

 

Weitere Screenshots zu diesem Modul

 

MathProf - Kettenlinie - Kettenlinien - Länge - Mathematik - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen
Grafische Darstellung - Beispiel 1

MathProf - Kettenlinie - Kettenlinien - Länge - Mathematik - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen
Grafische Darstellung - Beispiel 2
 
 

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Kettenlinie zu finden.
 

Weitere implementierte Module zum Themenbereich Analysis

 
MathProf - Funktionen - Funktion - Proportionale Funktion - Antiproportionale Funktion - Proportionale Funktionen - Antiproportionale Funktionen - Zweidimensionale Funktion - Logarithmische Darstellung - Halblogarithmische Darstellung - Doppeltlogarithmische Darstellung - Winkelskala - Logarithmus Skala - Logarithmische Skala - Rechner - Darstellen - Plotten - ZeichnenMathProf - Funktionen - Funktion - Gerade Funktion - Ungerade Funktion - Monoton fallende Funktion - Monoton wachsende Funktion - Kurvenplotter - Randverhalten - Grafikrechner - Reelle Funktionen - Funktionsbegriff - Konstante Funktionen - Mehrere Funktionen - Reellwertige Funktionenr - Funktionenplotter - Rationale Funktionen - Irrationale Funktionen - Rechner - Darstellen - Plotten - Zeichnen
 

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen  - Geometrische Lösung quadratischer Gleichungen - Ermittlung ganzrationaler Funktionen - Interaktiv - Interpolation nach Newton - Interaktiv - Interpolation nach Lagrange - Interaktiv - Polynomregression - Interaktiv - Nullstellen - Iterationsverfahren - Interaktiv - Tangente - Normale - Interaktiv - Tangente - Sekante - Interaktiv - Tangente und Normale von externem Punkt - Interaktiv - Simpson-Regel - Keplersche Fassregel - Spline-Interpolation - Spline-Interpolation - Interaktiv - Bézier-Kurven - Astroide - Kardioide - Konstruktion einer Kardioide - Konstruktion einer Hypozykloide - Konchoide - Lemniskate - Cassinische Kurven - Pascalsche Schnecke - Trisektrix - Zweiblatt-Kurve - Konstruktion krummliniger Kurven - Logarithmische Spirale - Konstruktion - Hyperbolische Spirale - Fourier-Analyse (Fast Fourier Transformation - FFT) - Taylor- und Potenzreihen - Interaktiv - Harmonische Synthese - Analyse implizit definierter Gleichungen - Höhenlinien - Konturen von Flächen in expliziter Form - Variante I - Höhenlinien - Konturen von Flächen in expliziter Form - Variante II - Schnittkurven von Flächen in expliziter Form - Zahlenfolgen - Interaktiv II - Rekursive Zahlenfolgen - Interaktiv II - Arithmetische Zahlenfolgen - Interaktiv - Geometrische Zahlenfolgen - Interaktiv - Funktionen in Parameterform - Polarkoordinaten - Funktionen in Polarform - Variante - Tangente - Normale mit Funktionen in Parameterform - Tangente - Normale mit Funktionen in Polarform - Segmentweise definierte Funktionen - Interaktiv - Inverse von Funktionen - Gemeinsame Darstellung von Kurven verschiedener Darstellungsformen - Ermittlung von Funktionsparametern - Funktionsschnittpunkte - Interaktiv - Funktionsstetigkeit
 

Screenshots weiterer Module von MathProf


MathProf - Wurzelfunktionen - Wurzelgleichungen - Quadratwurzelgleichungen - Quadratwurzelfunktion - Wurzelfunktion - Verschieben - Plotter - Zeichnen - Darstellung -   Nullstellen - Formel - Parameter - Verschieben - Grafisch - Eigenschaften - Grafik - Bilder - Graph - Berechnen - Rechner - Ableiten - Ableitung - Funktionsgleichung - Berechnung - Darstellen
MathProf 5.0 - Parameter der Quadratwurzelfunktion



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0