MathProf - Kepler - Fassregel - Keplersche Fassregel - Herleitung
Fachthema: Keplersche Fassregel
MathProf - Analysis - Programm für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe
für das Modul zur Analyse der Methode der Keplerschen Fassregel, die zur näherungsweisen Ermittlung der Inhalte krummlinig begrenzter Flächen Verwendung findet.
Das Programm stellt den mittels dieser Regel ermittelten Flächeninhalt dem exakten Flächeninhalt der zwischen Abszisse und Parabel vorhanden ist gegenüber und ermittelt den sich ergebenden prozentualen Fehler, der sich bei Nutzung dieses Verfahrens ergibt.
Untersuchungen zu diesem Thema können durch die Veränderung der Positionen der vorhandenen Stützstellen auf einfach Weise durchgeführt werden.
Die Berechnung der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul: Kepler - Fassregel - Keplersche Fassregel - Herleitung - Integral - Integration - Formel - Definition - Beispiel - Präsentation - Graph - Rechner - Berechnen - Darstellen - Zeichnen - Plotten |
Keplersche Fassregel
Modul Keplersche Fassregel
Das Modul [Analysis] - [Integrationsverfahren] - Keplersche Fassregel bietet die Möglichkeit, die Methode der Keplerschen Fassregel zur Ermittlung der Inhalte krummlinig begrenzter Flächen zu untersuchen.
Durch die Keplersche Fassregel ist es näherungsweise möglich, ohne die Nutzung der Integralrechnung, die Fläche unter einer Kurve zu bestimmen. Um zu dieser Näherung zu gelangen, wird das Intervall [a,b] unter der Kurve f(x) in drei gleich große Teilintervalle zerlegt. Mit c und d werden die Grenzen dieser Teilintervalle markiert und mit m die Mitte des Intervalls [a,b]. Hiernach wird Punkt A als a/f(a) und b als b/f(b) definiert.
Die Punkte A und B werden mit einer Sekante verbunden. Legt man im Punkt M (m/f(m)) die Tangente an, so verläuft diese parallel zur Sekante. Auf dieser Tangente y(x) liegen auch die Punkte C (c/y(c)) und D (d/y(d)). Verbindet man nun Punkt A mit Punkt C und Punkt D mit Punkt B, so erhält man drei halbe Trapezflächen unter der Kurve f(x). Der Inhalt dieser drei Trapezflächen ist die Näherung für die Fläche unter der Kurve f(x) im Intervall [a,b].
Somit beträgt die Gesamtfläche der drei Trapeze im gewählten Intervall:
Das Unterprogramm ermittelt die Fläche dieser drei (markierten) Trapeze, vergleicht sie mit dem exakten Wert des Flächeninhalts der grauen Fläche und gibt den prozentualen Fehler bezüglich dieser aus.
Veranschaulichen können Sie sich die Sachverhalte, wenn Sie folgende Schritte ausführen:
- Möchten Sie die Koordinatenwerte der Punkte exakt festlegen, so können Sie die Schaltfläche Punkte auf dem Bedienformular nutzen und die entsprechenden Werte im daraufhin erscheinenden Formular eingeben. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
- Soll die Lage eines Punktes mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in den rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste.
- Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Bedienformular
Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:
- P beschriften: Punktbeschriftung ein-/ausschalten
- Koordinaten: Anzeige der Koordinatenwerte dargestellter Punkte ein-/ausschalten
- Trapeze mark.: Markierung der Trapezflächen ein-/ausschalten
Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.
Simpson - Regel
Integrationsmethoden
Ober- und Untersummen
Ober - und Untersummen - Interaktiv
Integralrechnung
Integralrechnung - Interaktiv
Wurde Punkt A auf (1 / 5), Punkt B auf (7 / 4) und Punkt C auf (4 / 2) positioniert, so ermittelt das Programm:
Die Gleichung der durch die drei Punkte verlaufenden Parabel lautet: f(x) = 0,268·X² - 2,98·X + 7,112
Mit den hierdurch vorgegebenen Werten:
a = 1
b = 7
f(a) = 5
f(b) = 4
y(c) = 2,167
y(d) = 1,833
erfolgt die Ermittlung der Fläche der drei rot markierten Trapeze:
Die Gesamtfläche dieser Trapeze (Fassregel) beträgt somit: A = 17 FE
Der Inhalt der exakten Fläche unter der Funktion im Bereich [ab] (grau) beträgt: A = 16,996 FE.
Der prozentuale Fehler zwischen dem exakten Flächeninhalt und der dargestellten Fläche unter der Parabel liegt damit bei 0,024%.
Grafische Darstellung - Beispiel 1
Grafische Darstellung - Beispiel 2
Grafische Darstellung - Beispiel 3
Grafische Darstellung - Beispiel 4
Grafische Darstellung - Beispiel 5
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Simpsonregel-Keplersche Fassregel zu finden.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen - Geometrische Lösung quadratischer Gleichungen - Ermittlung ganzrationaler Funktionen - Interaktiv - Interpolation nach Newton - Interaktiv - Interpolation nach Lagrange - Interaktiv - Polynomregression - Interaktiv - Nullstellen - Iterationsverfahren - Interaktiv - Tangente - Normale - Interaktiv - Tangente - Sekante - Interaktiv - Tangente und Normale von externem Punkt - Interaktiv - Simpson-Regel - Spline-Interpolation - Spline-Interpolation - Interaktiv - Bézier-Kurven - Astroide - Kardioide - Konstruktion einer Kardioide - Konstruktion einer Hypozykloide - Konchoide - Lemniskate - Cassinische Kurven - Pascalsche Schnecke - Trisektrix - Zweiblatt-Kurve - Konstruktion krummliniger Kurven - Logarithmische Spirale - Konstruktion - Hyperbolische Spirale - Fourier-Analyse (Fast Fourier Transformation - FFT) - Taylor- und Potenzreihen - Interaktiv - Harmonische Synthese - Analyse implizit definierter Gleichungen - Höhenlinien - Konturen von Flächen in expliziter Form - Variante I - Höhenlinien - Konturen von Flächen in expliziter Form - Variante II - Schnittkurven von Flächen in expliziter Form - Zahlenfolgen - Interaktiv II - Rekursive Zahlenfolgen - Interaktiv II - Arithmetische Zahlenfolgen - Interaktiv - Geometrische Zahlenfolgen - Interaktiv - Funktionen in Parameterform - Polarkoordinaten - Funktionen in Polarform - Variante - Tangente - Normale mit Funktionen in Parameterform - Tangente - Normale mit Funktionen in Polarform - Segmentweise definierte Funktionen - Interaktiv - Inverse von Funktionen - Gemeinsame Darstellung von Kurven verschiedener Darstellungsformen - Ermittlung von Funktionsparametern - Funktionsschnittpunkte - Interaktiv - Kettenlinie - Funktionsstetigkeit
MathProf 5.0 - Unterprogramm Iterationen
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.