MathProf - Inversion - Kreis am Kreis - Inversion - Inverse - Punkt

MathProf - Mathematik-Software - Inversion am Kreis | Kreis | Punkt | Transformation

Fachthema: Inversion eines Kreises an einem zweiten Kreis

MathProf - Geometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Inversion am Kreis | Kreis | Punkt | Transformation

Online-Hilfe
für das Modul zur Durchführung der Inversion eines Kreises an einem Kreis.

Hierbei erfolgt die interaktive Bildung der Inverse eines Kreises an einem zweiten Kreis.


Das Berechnen der Werte erforderlicher Größen in diesem Unterprogramm erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

MathProf - Software für interaktive Mathematik
 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Inversion eines Kreises am Kreis - Inversion - Kreise - Kreisspiegelung - Kreisspiegelung am Kreis - Inversionszentrum - Inversionskreis - Mittelpunkt - Zentrum - Koordinatentransformation - Ursprungskreis - Transformation - Bild - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Zeichnen - Plotter

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
   

 Inversion eines Kreises am Kreis

 
MathProf - Inversion eines Kreises am Kreis - Inversion - Invers - Kreise - Kreisspiegelung - Kreisspiegelung am Kreis - Inversion Kreis Kreis - Konstruktion - Inversion am Kreis - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Zeichnen - Plotter
Modul Inversion eines Kreises am Kreis


 
Unter dem Menüpunkt
[Geometrie] - [Inversion] - Inversion eines Kreises am Kreis kann die Inversion eines Kreises an einem Kreis vollzogen werden.

 

MathProf - Inversion - Kreis - Inverse - Radius - Inversionskreis - Ursprungskreis - Mittelpunkt - Kreisspiegelung - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Zeichnen - Plotter

 

Als Inversion wird eine Umkehrung bezeichnet. In diesem Unterprogramm kann die Inversion eines Kreises an einem Kreis, eine sogenannte Kreisspiegelung eines Kreises durchgeführt werden. Der Kreis mit dem die Inversion durchgeführt wird, wird als Inversionskreis (Ursprungskreis) bezeichnet, dessen Mittelpunkt das Inversionszentrum ist.
 
Gegeben seien ein Kreis I mit dem Mittelpunkt O (dem Zentrum der Inversion) und dem Radius r sowie ein Punkt P, welcher von O verschieden ist. Dann ist der zu P inverse Punkt P' derjenige auf dem Strahl OP, der von O die Entfernung OP' = r²/OP besitzt. Punkt P' wird als inverser Punkt der Punkts P bezüglich I bezeichnet. Aus dieser Definition folgt, dass, falls P' der inverse Punkt zu P ist, auch P invers zu P' ist. Punkte die unverändert bleiben, sind die Punkte des Kreises I selbst.

 

Dieses Modul wendet das Verfahren nicht lediglich auf einen Punkt P, sondern auf die Menge aller Punkte die auf einem Kreis liegen, an.

 

Allgemein gilt:
 

Eine Inversion am Kreis I überführt

- eine Gerade, die durch O verläuft, in eine Gerade die durch O verläuft

- eine Gerade, die nicht durch O verläuft, in einen Kreis durch O

- einen Kreis durch O in eine Gerade, die nicht durch O verläuft

- einen Kreis, der nicht durch O verläuft, in einen Kreis der nicht durch O verläuft

 

Die hierbei vonstatten gehende Koordinatentransformation kann beschrieben werden durch:

 

x' = x0 + r² (x - x0) / ((x - x0)² + (y - y0)²)

y' = y0 + r² (y - y0) / ((x - x0)² + (y - y0)²)

 

mit:

x',y': Transformierte Koordinaten des Punkts P'

x,y: Koordinaten des zu transformierenden Punkts P

x0,y0: Kreismittelpunkt des Inversionskreises I

r: Radius des Inversionskreises I

 

In diesem Unterprogramm können Sie diese Sachverhalte anhand der Durchführung einer Inversion eines Kreises K2 an einem Ursprungskreis K1, dessen Mittelpunkt frei wählbar ist und dessen Radius eingestellt werden kann, analysieren. Der entstandene Kreis trägt die Bezeichnung K3.
 

Darstellung

 
Führen Sie Folgendes aus, um Zusammenhänge bei einer Inversion dieser Art zu analysieren:
 

  1. Legen Sie durch die Bedienung des Schiebereglers Radius auf dem Bedienformular den Radius des Ursprungskreises K1 fest.
     
  2. Möchten Sie den Mittelpunkt M1 des Ursprungskreises K1, den Mittelpunkt M2 des zu invertierenden Kreises K2, oder Punkt P, exakt positionieren, so bedienen Sie die Schaltfläche Punkte auf dem Bedienformular und geben die hierfür relevanten Koordinatenwerte im daraufhin erscheinenden Formular ein. Übernommen werden diese, wenn Sie die sich dort befindende Schaltfläche Ok bedienen.
     
  3. Um den Radius des zu invertierenden Kreises K2 zu ändern, klicken Sie in den rechteckig umrahmten Mausfangbereich des auf der Peripherie des Kreises positionierten Punkts P und bewegen den Mauscursor bei gedrückt gehaltener linker Maustaste.
     
  4. Sollen die Positionen von Kreismittelpunkten mit der Maus verändert werden, so klicken Sie mit der linken Maustaste in deren rechteckig umrahmten Mausfangbereich und bewegen den Mauscursor bei gedrückt gehaltener Maustaste.
     
  5. Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Hierauf können Sie ggf. die Werte für Schrittweite, Verzögerung bzw. die Anzahl zu verwendender Winkelschritte einstellen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.

Möchten Sie die Inversion zudem nur für einen separaten Punkt P durchführen lassen und dessen Position auf der Peripherie des invertierten Kreises K3 lokalisieren, so aktivieren Sie hierfür das Kontrollkästchen Punkte darstellen. Der durch Inversion entstandene Punkt trägt die Bezeichnung P'.

Die Mittelpunkte aller Kreise liegen auf einer Geraden. Dies können Sie sich veranschaulichen, wenn Sie den Kontrollschalter Gerade aktivieren.
 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
 

Bedienformular


MathProf - Inversion - Zentrum - Kreis - Inverse - Radius - Inversionskreis - Ursprungskreis - Mittelpunkt

Auf dem Bedienformular, welches durch Anklicken im obersten schmalen Bereich und bei Gedrückthalten der linken Maustaste verschiebbar ist, können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende zusätzliche Einstellungen vornehmen:

  • P beschriften: Punktbeschriftung ein-/ausschalten
  • Koordinaten: Anzeige der Koordinatenwerte dargestellter Punkte ein-/ausschalten
 

Allgemein

 

Allgemeines zum Handling des Programms bzgl. der Darstellung zweidimensionaler Grafiken wird unter Zweidimensionale Grafiken - Handling beschrieben. Wie Sie das Layout einer 2D-Darstellung konfigurieren können, erfahren Sie unter Layoutkonfiguration. Methoden zur Implementierung und zum Umgang mit grafischen Objekten werden unter Implementierung und Verwendung grafischer Objekte behandelt.

 

Weitere Themenbereiche

 

Inversion einer Geraden am Kreis

 

Beispiel


Legen Sie den Radius des Ursprungskreises K1 mit r1 = 8 fest und definieren Sie den Mittelpunkt dessen bei M1 (-5 / 3). Positionieren Sie den Mittelpunkt des zu invertierenden Kreises K2 bei M2 (1 / 2) und legen Sie die Koordinaten des Punktes auf  P (2 / 4) fest, so ermittelt das Programm folgende Ergebnisse:

Der durch Inversion des Kreises K1 an Kreis K2 entstandene Kreis K3 besitzt die Eigenschaften:

 

Mittelpunkt: M3 (7 / 1)

Radius: r3 = 4,472

 

Die Eigenschaften des, durch Positionierung des Punktes P bemessenen, Kreises K2 sind:

 

Mittelpunkt: M2 (1 / 2)

Radius: r2 = 2,236

 

Für den durch Inversion des Punkts P entstandenen Punkt P' ermittelt das Programm die Koordinatenwerte: P' (3,96 / 4,28)
 

Weitere Screenshots zu diesem Modul

 

MathProf - Inversion eines Kreises am Kreis - Inversion - Kreise - Kreisspiegelung - Kreisspiegelung am Kreis - Inversion Kreis Kreis - Konstruktion - Inversion am Kreis - Darstellen - Plotten - Graph - Rechner - Berechnen - Grafik - Zeichnen - Plotter
Grafische Darstellung - Beispiel 1

MathProf - Inversion - Kreis - Inverse - Inversion am Kreis - Beispiel - Kreisspiegelung - Inversionszentrum - Inversionskreis - Mittelpunkt - Zentrum - Koordinatentransformation - Ursprungskreis - Transformation
Grafische Darstellung - Beispiel 2

MathProf - Inversion - Kreisspiegelung - Matrix - Eigenschaften - Inversion Kreis Kreis - Konstruktion - Inversion am Kreis - Beispiel - Rechner - Berechnen
Grafische Darstellung - Beispiel 3

   

Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Inversion zu finden.
 

Weitere implementierte Module zum Themenbereich Geometrie


MathProf - Polygon - Polygone - Zentrische Streckung - Figur - Figuren - Geometrische Transformation - Punkte - Kongruenzabbildungen - Flächenschwerpunkt - Streckung - Verschiebung - Drehung - Drehstreckung - Gleitspiegelung - Schubspiegelung - Maßstab - Maßstäbe - Abbildungsmaßstab - Abbildungsmaßstäbe - Umrechnen - Vergrößern - Rechner - Berechnen - Darstellen - Zeichnen - GrafischMathProf - Figuren - Figur - Verkleinern - Vergrößerung - Verkleinerung - Maßstabsberechnung - Maßstabsumrechnung - Maßstabsleiste - Mehrfachspiegelung - Polygon - Polygone - Rotation - Streckfaktor - Streckzentrum - Streckungszentrum - Symmetriezentrum - Symmetrische Figuren - Symmetrie - Symmetrisch - Achsensymmetrie - Achsensymmetrisch - Punktsymmetrie - Punktsymmetrisch - Drehsymmetrie - Drehsymmetrisch - Achsensymmetrische Figuren - Punktsymmetrische Figuren - Drehsymmetrische Figuren - Rechner - Berechnen - Darstellen - Zeichnen - Grafisch
 

Achsenabschnittsform einer Geraden - Punkt-Richtungs-Form einer Geraden - Zwei-Punkte-Form einer Geraden - Hessesche Normalenform einer Geraden - Allgemeine Form einer Gerade - Gerade - Gerade - Gerade - Gerade - Interaktiv - Gerade - Punkt - Gerade - Punkt - Interaktiv - Geradensteigung - Kreis - Punkt - Kreis - Punkt - Interaktiv - Kreis - Gerade - Kreis - Gerade - Interaktiv - Kreis - Kreis - Kreis - Kreis - Interaktiv - Kreisausschnitt - Kreissegment - Kreisring - Ellipse - Regelmäßiges Vieleck - Viereck - Allgemeines Viereck – Interaktiv - Satz des Ptolemäus - Satz des Arbelos - Pappus-Kreise - Archimedische Kreise - Hippokrates Möndchen - Varignon-Parallelogramm - Rechteck-Scherung - Soddy-Kreise - Polygone - Bewegungen in der Ebene - Affine Abbildung - Analyse affiner Abbildungen - Inversion einer Geraden am Kreis - Spirolateralkurven - Spiralen im Vieleck - Granvillesche Kurven - Bérard-Kurven - Eikurven - Kegelschnitt - Prinzip - Pyramidenschnitt - Prinzip - Kegelschnitte in Mittelpunktlage - Kegelschnitte in Mittelpunktlage - Interaktiv - Kegelschnitte in achsparalleler Lage - Kegelschnitte in achsparalleler Lage - Interaktiv - Kegelschnitte in Mittelpunktlage - Punkt - Kegelschnitte in Mittelpunktlage - Gerade - Allgemeine Kegelschnitte - Kegelschnitte durch 5 Punkte - Interaktive Geometrie mit Objekten - Winkelmaße - Strahlensatz - Teilungsverhältnis - Konstruktion einer Mittelsenkrechten - Konvexe Hülle - Dreieck - Pyramide - Quader im Raum (3D) - Krummflächig begrenzte Körper (3D) - Ebenflächig und krummflächig begrenzte Körper (3D) - Platonische Körper (3D) - Archimedische Körper (3D) - Spezielle Polyeder (3D) - Selfbuild - Punkte (3D) - Selfbuild - Strecken (3D)

 

Screenshots weiterer Module von MathProf


MathProf - Inversion - Kreis - Gerade - Gerade invertieren - Umkehrung - Inversionszentrum - Kreisspiegelung - Rechner - Berechnen - Graph - Plotten - Darstellen
MathProf 5.0 - Unterprogramm Inversion einer Geraden am Kreis



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0