MathProf - Geraden - Schnittpunkt - Neigungswinkel - Punkt - Rechner

MathProf - Mathematik-Software - Gerade im Raum

Fachthemen: Gerade in Punkt-Richtungs-Form - Interaktiv (3D)

MathProf - Vektorgeometrie - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Schüler, Abiturienten, Studenten, Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - MathProf - Geraden - Gerade - Raum - 3D

Online-Hilfe
für das Modul zur interaktiven Praktizierung von Untersuchungen mit Geraden im Raum, beschrieben durch vektorielle Geradengleichungen in Punkt-Richtungs-Form.

Das Programm ermöglicht die Veranschaulichung der Lagebeziehung zweier Geraden im Raum sowie die grafische Ausgabe der Lagebeziehung von Punkt und Gerade (Abstand Punkt-Gerade) im Raum.

Zudem ermittelt der implementierte Rechner den Abstand eines Punktes von einer Geraden. Auch das Berechnen des Abstands zweier Geraden, des Schnittpunkts zweier Geraden und des Schnittwinkels von zwei Geraden wird durchgeführt.

Die Spurpunkte einer Gerade werden ebenfalls ausgegeben und der Abstand parallel liegender Geraden kann berechnet werden. Des Weiteren werden die Richtungswinkel einer definierten Gerade ermittelt.

Der 3D-Plotter verfügt über ein frei bewegliches und drehbares, dreidimensionales Koordinatensystem und ermöglicht die Durchführung interaktiver Analysen bzgl. Sachverhalten und geltender Zusammenhänge zu diesem Fachthema. Auch die Ausführung verschiedener Animationen mit Gebilden dieser Art kann veranlasst werden.

Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben und dazu dienlich sind, Aufgaben zu diesem Themengebiet zu lösen, sind eingebunden.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Gerade - Geraden - Punkt - Richtung - Vektor - Berechnen - Rechner - Zeichnen - Spurpunkte - Gleichung - Abstand - Schnittpunkt - Neigungswinkel - Schnittwinkel

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
   

Gerade in Punkt-Richtungs-Form - Interaktiv (3D)

 
MathProf - Gerade im Raum - Zwei-Punkte-Form einer Gerade - Analytische Geometrie - Vektorgeometrie - Winkel zwischen zwei Geraden - Rechner - Berechnen
Modul Gerade in Punkt-Richtungs-Form - Interaktiv



Das Unterprogramm [Vektoralgebra] - [Gerade in P-R-Form] - Gerade in P-R-Form - Interaktiv ermöglicht die interaktive Durchführung von Untersuchungen mit Geraden in Punkt-Richtungs-Form.

 

MathProf - Geraden - Gerade - Lagebeziehung zweier Geraden im Raum - Windschiefe Geraden - Sich schneidende Geraden - Schnittwinkel zweier Geraden - Rechner - Berechnen



Die Anwendungsmöglichkeiten dieses Unterprogramms sind:
 

  • Eigenschaftsanalyse einer Gerade in Punkt-Richtungs-Form (Spurpunkte)
  • Darstellung einer Gerade in Punkt-Richtungs-Form (sowie eines Punktes, oder einer weiteren Geraden)
  • Berechnung des Abstands eines Punktes von einer Geraden in Punkt-Richtungs-Form (Abstand Punkt-Gerade)
  • Ermittlung des Schnittpunkts und des Schnittwinkels zweier Geraden
  • Ermittlung des Abstands zweier Geraden
 
Definitionsformen von Geraden (Geradengleichung - Formel)
 

Mögliche Definitionsformen (Darstellungsformen) von Geraden in diesem Unterprogramm sind:


1. Parameterdarstellung (Parameterform) einer Geraden in Punkt-Richtungs-Form:
Gerade - Raum - Vektor - Gleichung - 1

2. Darstellung einer Geraden in Zwei-Punkte-Form:
Gerade - Raum - Vektor - Gleichung - 2
 
 Zusammenhänge und Formeln

Formeln zu diesem Fachthema, die für eine Gerade in Punkt-Richtungs-Form anwendbar sind, sind nachfolgend gezeigt.

1. Abstand eines Punktes Q von einer Geraden in Punkt-Richtungs-Form:


Für den Abstand eines Punktes Q von einer Geraden in Punkt-Richtungs-Form gilt:

Gerade - Raum - Vektor - Gleichung - 3

rQ: Ortsvektor des Punktes Q


2. Abstand zweier Geraden:

Der Abstand zweier windschiefer Geraden, die in Punkt-Richtungs-Form definiert sind, beträgt:


Gerade - Raum - Vektor - Gleichung - 4

Zwei Geraden welche in Punkt-Richtungs-Form definiert sind, schneiden sich wenn dieses Spatprodukt verschwindet. Es gilt:

Gerade - Raum - Vektor - Gleichung - 5


3. Schnittpunkt zweier Geraden:
 
Der Schnittpunkt zweier windschiefer Geraden, diee in Punkt-Richtungs-Form definiert sind, kann ermittelt werden durch die Gleichsetzung ihrer Vektorgleichungen:



Gerade - Raum - Vektor - Gleichung - 6


Der Schnittwinkel zweier windschiefer Geraden kann wie folgt ermittelt werden:


Gerade - Raum - Vektor - Gleichung - 7

Zur Verwendung o.a. Vektorgleichungen sind die Darstellungsformen der Geraden in Punkt-Richtungs-Form zu bringen.
 
Bedeutung der im Programm verwendeten Bezeichnungskürzel
 
Die Bedeutungen der im Programm verwendeten Bezeichungskürzel sind folgende:
 
d: Abstand einer Geraden vom Koordinatenursprung
Sx,Sy,Sz: Spurpunkte einer Gerade
SP: Schnittpunkt zweier Geraden
SW: Schnittwinkel zweier Geraden
g,g1,g2: Gerade in 2-Punkte- oder Punkt-Richtungs-Form
α,β,γ Neigungswinkel einer Geraden bzgl. entspr. Achsen
r,r1,r2: Ortsvektor einer Geraden
a,b: Richtungsvektor einer Geraden
P,P1,P2,P3: Punkte
λ: Parameterwerte für Richtungsvektoren einer Geraden
g1-g2: Gerade 1 - Gerade 2

 

MathProf - Geraden - Gerade - Abstand Punkt Gerade - Abstand Punkt-Punkt - Abstände berechnen - Abstände - Gerade durch 2 Punkte - Gerade in Zweipunkteform - Vektoren - Rechner - Berechnen
 
Arbeitsblätter - Unterrichtsmaterialien - Nutzung zu Unterrichtszwecken

 
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.

Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.

 

Aufgaben - Lernen - Üben - Übungen

  
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Animationsprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Verstehen sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Handhabbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Untersuchungen hierzu. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.

Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens sowie als Unterstützung bei der Bearbeitung von Anwendungsaufgaben genutzt werden. Des Weiteren eignet es sich auch als Begleiter bei der Bearbeitung von Abituraufgaben sowie zur Vorbereitung auf Klassenarbeiten, zur Unterstützung bei der Abiturvorbereitung und zur Intensivierung des erforderlichen Wissens beim Abitur (Abi) im entsprechenden Leistungskurs (LK).
 
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
 
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind, können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.

  
Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
  
Darstellung
 
Es wird ein dem nachfolgend gezeigten, ähnliches Bedienformular zur Verfügung gestellt, welches die Veränderung von Punktkoordinatenwerten, bzw. Koeffizienten mit Hilfe von Rollbalken zulässt.
 
MathProf - Geraden - Gerade - Vektordarstellung einer Geraden - Vektorielle Darstellung von Geraden im Raum - Zweipunktegleichung einer Geraden - Geradengleichung in 2-Punkte-Form - Rechner - Berechnen
 
Die Parameter folgender Einflussgrößen können durch manuelle oder simulative Veränderung der Position von Rollbalken eingestellt werden:
 
Objekt
 
Bezeichnung des veränderbaren Parameters, Koeffizienten Bedeutung
Gerade in 2-Punkte-Form P1x,P1y,P1z,P2x,P2y,P2z Koordinatenwerte zweier Punkte P1 und P2, durch welche die Gerade verläuft
Gerade in Punkt-Richtungs-Form r1x,r1y,r1z,ax,ay,az Werte der Koeffizienten r und a der Gerade in Punkt-Richtungs-Form
Punkt Px,Py,Pz Koordinatenwerte des Punktes P
 
Gehen Sie folgendermaßen vor, um Zusammenhänge zu diesem Fachthema interaktiv zu analysieren:
 
  1. Aktivieren Sie Kontrollschalter Interaktiv I oder Interaktiv II.
     
  2. Möchten Sie sich lediglich Zusammenhänge bzgl. der in Punkt-Richtungs-Form definierten Gerade veranschaulichen, so bedienen Sie die Schaltfläche Gerade in P-R-Form.

    Sollen Untersuchungen mit Punkt und Gerade interaktiv durchgeführt werden, so klicken Sie auf die Schaltfläche Gerade in P-R-Form und Punkt.

    Ist es gewünscht eine Analyse mit einer Geraden in Punkt-Richtungs-Form und einer Geraden in 2-Punkte-Form durchzuführen, so aktivieren Sie den Kontrollschalter
    Gerade in P-R-Form und Gerade in 2-P-Form.

    Um die Lagen zweier Geraden in Punkt-Richtungs-Form zu untersuchen, aktivieren Sie den Kontrollschalter 2
    Geraden in P-R-Form.
     
  3. Bedienen Sie die Schaltfläche Darstellen.
     
  4. Nutzen Sie die auf dem Bedienformular zur Verfügung stehenden Schieberegler, um Punktkoordinaten- bzw. Koeffizientenwerte zu verändern.
     
  5. Wurde die Darstellungsart Interaktiv II gewählt, so bedienen Sie ggf. den Schieberegler Bereich, um die Größe des Darstellungsbereichs zu verändern.
     
  6. Starten Sie bei Bedarf eine Autosimulation mit dem Schalter Start Sim. Diese Schaltfläche trägt hierauf die Bezeichnung Stop Sim. Angehalten werden kann die Simulation durch eine erneute Betätigung dieser.

Hinweise:
Vor dem Start einer Simulation wird ein Formular zur Verfügung gestellt, auf welchem Sie durch eine Aktivierung der entsprechenden Kontrollkästchen die Auswahl simulativ zu verändernder Einflussgrößen (Koordinatenwerte) treffen.

Bei jeder Veränderung einer Rollbalkenposition werden die Ergebnisse durchgeführter Berechnungen ausgegeben (unter der Voraussetzung, dass Textausgabe eingeschaltet ist).
 
Darstellungsbereich
 
Das Programm stellt hierbei die folgenden beiden Möglichkeiten zur Verfügung, um interaktive Analysen von Sachverhalten und Zusammenhängen zu diesem Fachthema durchzuführen:
 
  • Interaktiv I
  • Interaktiv II

Wird der Kontrollschalter Interakiv I aktiviert, so wird der Darstellungsbereich, abhängig von vorgegebenen Werten, vom Programm automatisch festgelegt.

Bei einer Aktivierung des Kontrollschalters Interakiv II stellt es die Zusammenhänge innerhalb eines durch Zahlenwerteingaben festlegbaren Bereichs dar. Alle auszugebenden Objekte werden in diesem Fall an den Grenzen des eingestellten Darstellungsbereichs beschnitten. Befinden sich hierbei Teile eines Objekts außerhalb des gewählten Darstellungsbereichs und ist dieses hierdurch nicht mehr vollständig sichtbar, so ist der zur Erreichung einer korrekten Ausgabe erforderliche Darstellungsbereich mit Hilfe des zur Verfügung stehenden Rollbalkens Bereich einzustellen.
 
Darstellung - Optionen

Im Formularbereich Darstellung - Option können Sie u.a. durch die Aktivierung bzw. Deaktivierung der entsprechenden Kontrollkästchen folgende Einstellungen vornehmen, die bei Ausgabe der grafischen Darstellung der Zusammenhänge wirksam werden:
 
  • Textausgabe: Anzeige ermittelter Ergebnisse bei Ausgabe der Darstellung ein-/ausschalten
  • Vektoren: Darstellung der Orts- und Richtungsvektoren der Geraden ein-/ausschalten
  • Geradenpunkte: Darstellung zweier Punkte, durch welche die Gerade verläuft ein-/ausschalten (bei Darstellung einer Gerade in 2-Punkte-Form sind dies die Punkte, welche durch Rollbalkenpositionierung festgelegt wurden)
  • Abstandslinie: Darstellung der vertikalen Abstandslinie zwischen zwei Geraden ein-/ausschalten
  • Hilfslinien: Darstellung von Hilfslinien der Geraden ein-/ausschalten
  • Beschriften: Beschriftung dargestellter Vektoren und Punkte ein-/ausschalten
 
Allgemein
 
Grundlegendes zum Umgang mit dem Programm bei der Ausgabe dreidimensionaler grafischer Darstellungen erfahren Sie unter Dreidimensionale Grafiken - Handling. Wie Sie das Layout einer 3D-Darstellung konfigurieren können, erfahren Sie unter 3D-Layoutkonfiguration.
 
Weitere Themenbereiche
 
Gerade in Punkt-Richtungs-Form (3D)
Gerade in 2-Punkte-Form (3D)
Gerade in 2-Punkte-Form - Interaktiv (3D)
 
Beispiele

Beispiel 1 - Eigenschaften einer Gerade in Punkt-Richtungs-Form:

Nach einer Aktivierung des Kontrollschalters Gerade in P-R-Form und der Bedienung der Schaltfläche Darstellen auf dem Hauptformular des Unterprogramms, sowie einer Positionierung der zur Verfügung stehenden Rollbalken im Formularbereich Gerade in P-R-Form des Bedienformulars, wie nachfolgend gezeigt,

MathProf - Geraden - Gerade - Spurpunkte einer Gerade - Richtungsvektor einer Gerade - Ortsvektor einer Gerade - Abstand zweier Geraden - Abstand zweier Punkte im Raum - Rechner - Berechnen

wird eine Gerade dargestellt, welche durch eine Gleichung in vektorieller Schreibweise (Punkt-Richtungs-Form) beschrieben werden kann mit:



Für zwei Punkte, durch welche die Gerade verläuft, gibt das Programm aus:

P1 (4 / -1 / -7)
P2 (5 / -6 / -9)

Die Richtungswinkel der Geraden ermittelt das Programm mit:

a = 79,48°
b = 155,905°
g = 111,417°

Für die Spurpunkte der Geraden wird ausgegeben:

Sx (0 / 19 / 1)
Sy (3,8 / 0 / -6,6)
Sz (0,5 / 16,5 / 0)
 
Der Abstand der Geraden vom Koordinatenursprung beträgt: d = 6,955

Beispiel 2 - Abstand eines Punkts von einer Gerade in Punkt-Richtungs-Form:

Nach einer Aktivierung des Kontrollschalters Gerade in P-R-Form und Punkt und der Bedienung der Schaltfläche Darstellen auf dem Hauptformular des Unterprogramms, sowie einer Positionierung der zur Verfügung stehenden Rollbalken in den Formularbereichen Gerade in P-R-Form sowie Punkt des Bedienformulars, wie nachfolgend gezeigt,

MathProf - Geraden - Gerade - Schnittpunkt zweier Geraden - Geradengleichungen im Raum - Verbindungsvektor - Abstand Gerade-Gerade - Schnittpunkt Gerade-Gerade - Winkel Gerade-Gerade

wird eine Gerade dargestellt, welche durch eine Gleichung in vektorieller Schreibweise (Punkt-Richtungs-Form) beschrieben werden kann mit:



Zudem wird ein Punkt dargestellt, welcher durch die Koordinatenwerte P (1 / 2 / -3) definiert ist.

Für den Abstand des Punktes P von der Geraden (Abstand Punkt-Gerade), gibt das Programm aus: d = 6,895

Für weitere Eigenschaften der Gerade gibt das Programm aus:

Zwei Punkte, durch welche die Gerade verläuft:

P1 (1 / -5 / 1)
P2 (5 / -1 / 2)

Richtungswinkel der Geraden:

a = 45,868°
b = 45,868°
g = 79,975°

Spurpunkte der Geraden:

Sx (0 / -6 / 0,75)
Sy (6 / 0 / 2,25)
Sz (-3 / -9 / 0)
 
Der Abstand der Geraden vom Koordinatenursprung beträgt d = 4,492.
 
Für den definierten Punkt P (1 / 2 / -3) wird ausgegeben:
Der Abstand des Punktes von der Geraden beträgt d = 6,895.
 
Die Koordinatenwerte des Lotfußpunkts vom Punkt P auf die Gerade g sind L (3,909 / -2,091 / 1,727).
 
Der Abstand des Punktes P vom Koordinatenursprung beträgt d = 3,742.

Beispiel 3 - Lage einer Geraden in Punkt-Richtungs-Form und einer Geraden in 2-Punkte-Form:

Nach einer Aktivierung des Kontrollschalters Gerade in P-R-Form und Gerade in 2-P-Form und der Bedienung der Schaltfläche Darstellen auf dem Hauptformular des Unterprogramms, sowie einer Positionierung der zur Verfügung stehenden Rollbalken in den Formularbereichen Gerade in P-R-Form sowie Gerade in 2-P-Form des Bedienformulars, wie nachfolgend gezeigt,

MathProf - Geraden - Gerade - Schnittpunkt zweier Geraden - Geradengleichungen im Raum - Verbindungsvektor - Abstand Gerade-Gerade - Schnittpunkt Gerade-Gerade - Winkel Gerade-Gerade

wird eine Gerade dargestellt, welche durch eine Gleichung in vektorieller Schreibweise (Punkt-Richtungs-Form) beschrieben werden kann mit:



sowie eine Gerade, welche durch die beiden Punkte P1 und P2, mit den Koordinatenwerten

P1 (1 / 0 / 3)
P2 (0 / 2 / 2)
 
verläuft.

Die Geraden schneiden sich nicht (liegen windschief). Für deren Abstand (g1-g2) gibt das Programm aus: d = 1,809

Für die Eigenschaften der Gerade g1 ermittelt das Programm:
 


Zwei Punkte, durch welche Gerade g1 verläuft:

P1 (-2 / 3 / 3)
P2 (-5 / 7 / -2)

Richtungswinkel der Geraden g1:

a = 115,104°
b = 55,55°
g = 135°

Spurpunkte der Geraden g1:

Sx (0 / 0,333 / 6,333)
Sy (0,25 / 0 / 6,75)
Sz (-3,8 / 5,4 / 0)
 
Der Abstand der Geraden g1 vom Koordinatenursprung beträgt: d = 4,671
 

Für die Eigenschaften der Gerade g2 gibt das Programm aus:
 
Vektorielle Schreibweise:
 

Zwei Punkte, durch welche die Gerade g2 verläuft:

P1 (1 / 0 / 3)
P2 (0 / 2 / 2)

Richtungswinkel der Geraden g2:

a = 114,095°
b = 35,264°
g = 114,095°

Spurpunkte der Geraden g2:

Sx (0 / 2 / 2)
Sy (1 / 0 / 3)
Sz (-2 / 6 / 0)
 
Der Abstand der Geraden g2 vom Koordinatenursprung beträgt: d = 2,708
 
Werden die Eigenschaften der Geraden g2 (des Punktes P2 dieser Geraden) derart verändert, dass diese durch die Punkte
 
P1 (1 / 0 / 3)
P2 (2 / -1 / 3)
 
verläuft, so kann festgestellt werden, dass sich die dargestellten Geraden schneiden.
 
Das Programm gibt hierbei aus:
 
Schnittpunkt der Geraden g1 und g2: SP (-2 / 3 / 3)
Schnittwinkel der Geraden g1 und g2: 134,427°
 
Screenshots
 
MathProf - Geraden - Gerade - Abstand - Distanz - Position - Winschief - Parallel - Windschiefe Geraden - Abstand windschiefer Geraden - Lot - Gleichung - Grafik - Rechner - Berechnen

Grafische Darstellung - Beispiel 1

MathProf - Geraden - Gerade - Raum - Räumlich - Plotter - Rechner - Berechnen - Graph - Grafikrechner - Beispiel - Zeichnen - Plotten - Darstellen

Grafische Darstellung - Beispiel 2

MathProf - Geraden - Gerade -  Untersuchen - Untersuchung - Analyse - Lage einer Gerade - Lage zweier Geraden - Lage Gerade Gerade - Rechner - Berechnen

Grafische Darstellung - Beispiel 3

MathProf - Geraden - Gerade - Schnittwinkel zweier Geraden - Schnittpunkt zweier Vektoren - Abstand einer Gerade vom Ursprung - Distanz Punkt Gerade - Lagebeziehungen - Rechner - Berechnen

Grafische Darstellung - Beispiel 4

MathProf - Geraden - Gerade - Vektordarstellung - Vektorielle Darstellung von Geraden - Punkte bestimmen - Normalabstand Punkt Gerade - 3D - Geradengleichung - Aufstellen - Rechner - Berechnen

Grafische Darstellung - Beispiel 5

MathProf - Geraden - Gerade - Lagebeziehungen - Abstandsberechnungen - Formel - Parameter - Richtungsvektor - Gegenseitige Lage von Geraden - Gerade durch Ursprung - Rechner - Berechnen

Grafische Darstellung - Beispiel 6
 
Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
  
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter folgenden Adressen zu finden:

Wikipedia - Geraden im Raum
Wikipedia - Schnittpunkt zweier Geraden im Raum
 

Weitere implementierte Module zum Themenbereich Vektoralgebra


MathProf - Geraden - Im Raum - 3D - Vektorielle Darstellung - Windschiefe Geraden - Berechnen - Parameterdarstellung - Parameterform - Geradengleichung - Vektorielle Gleichung - Parametergleichung einer Gerade - Windschiefe Geraden - Parallele Geraden - Punkte -  Sphärischer Abstand - Abstandsberechnung - Ursprung - Rechner - Berechnen - Zeichnen - DarstellenMathProf - Gerade - Geraden - Punkt - Ortsvektor - Punktprobe - Normalabstand - Gegenseitige Lage - Schneidende Geraden - Darstellungsformen - 3D - Vektorrechnung im Raum - Gemeinsame Punkte - Schneidende Geraden - Rechner - Berechnen - Zeichnen - Darstellen
 

Gerade und Vektoren - Vektorielle Linearkombination - Vektorielles Teilverhältnis - Vektoraddition in der Ebene - Resultierende - Vektorprodukt (3D) - Skalarprodukt (3D) - Spatprodukt (3D) - Vektorprojektion (3D) - Tripelprodukt (3D) - Numerische Vektoraddition im Raum - Grafische Vektoraddition im Raum (3D) - Gerade in Punkt-Richtungs-Form (3D) - Gerade in 2-Punkte-Form (3D) - Ebene in Punkt-Richtungs-Form (3D) - Ebene in 3-Punkte-Form (3D) - Ebene in Normalen-Form (3D) - Ebene in Koordinaten-Form (3D) - Zwei Ebenen (3D) - Kugel - Gerade (3D) - Kugel - Ebene - Punkt (3D) - Kugel - Kugel (3D) - Komponentendarstellung - Interaktiv (3D) - Vektorprodukt - Interaktiv (3D) - Skalarprodukt - Interaktiv (3D) - Spatprodukt - Interaktiv (3D) - Vektorprojektion - Interaktiv (3D) - Tripelprodukt - Interaktiv (3D) - Grafische Vektoraddition im Raum - Interaktiv (3D) - Gerade in 2-Punkte-Form - Interaktiv (3D) - Ebene in Punkt-Richtungs-Form - Interaktiv (3D) - Ebene in 3-Punkte-Form - Interaktiv (3D) - Ebene in Normalen-Form - Interaktiv (3D) - Ebene in Koordinaten-Form - Interaktiv (3D) - Ebene - Ebene - Interaktiv (3D) - Kugel - Gerade - Interaktiv (3D) - Kugel - Ebene - Punkt - Interaktiv (3D) - Kugel - Kugel - Interaktiv (3D) - Spiegelungen mit Geraden in Punkt-Richtungs-Form (3D) - Spiegelungen mit Geraden in 2-Punkte-Form (3D) - Spiegelungen mit Ebenen in Punkt-Richtungs-Form (3D) - Spiegelungen mit Ebenen in 3-Punkte-Form (3D) - Spiegelungen mit Ebenen in Normalen-Form (3D) - Spiegelungen mit Ebenen in Koordinaten-Form (3D)

Screenshot des Startfensters dieses Moduls
 

MathProf - Vektoren - Komponenten - Skalar - Multiplikation - Multiplizieren - Komponentendarstellung - Skalare Multiplikation - Vektorkomponenten -  Skalarmultiplikation - Vektor - Plotter - Graph - Rechner - Grafisch - Bilder - Plotten - Darstellung - Berechnen - Darstellen
Startfenster des Unterprogramms Gerade in Punkt-Richtungs-Form - Interaktiv
 

Screenshots weiterer Module von MathProf


MathProf - Grafische Addition - Vektoren - Addieren - Raum - Dreidimensional - 3D - Vektoren addieren - Berechnungen - Berechnen - Dreidimensionale Vektoren - Ortsvektor - Vektorsumme - Richtungsvektoren - Winkel - Graph - Grafisch - Plotten - Plotter - Bilder - Darstellung - Zeichnen
MathProf 5.0 - Startfenster des Unterprogramms Vektoraddition



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Grafikfenster des Unterprogramms Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0