MathProf - FFT - Fourier Analyse - Fast Fourier Transformation - Rechner

MathProf - Mathematik-Software - Integer-Funktion | Parameter

Fachthema: Fourier-Analyse (FFT)

MathProf - Analysis - Programm für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.

MathProf - Mathematik für Schule, Studium und Wissenschaft - Integer-Funktion | Parameter

Online-Hilfe
für das Modul zur Durchführung von Fourier-Analysen mit vorhandenen Messdaten und zur Durchführung prinzipieller Analysen hierbei relevanter Sachverhalte.

Untersuchungen hierzu können sowohl durch das Einlesen erfasster Messdaten, wie auch durch die Benutzung zur Verfügung stehender Bedienelemente interaktiv praktiziert werden.

Das Ermitteln der Werte erforderlicher Größen erfolgt zur Echtzeit. Der Rechner stellt die entsprechenden Zusammenhänge unmittelbar nach Eintritt einer interaktiven Operation dar. Jedes relevante Ergebnis einer durchgeführten Berechnung zu diesem Fachthema wird aktualisiert ausgegeben.

Beispiele, welche Aufschluss über die Verwendbarkeit und Funktionalität
dieses Programmmoduls geben, sind implementiert.

MathProf - Software für interaktive Mathematik 

Weitere relevante Seiten zu diesem Programm


Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
 
Zur Startseite dieser Homepage
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Videoauswahl zu MathProf 5.0.
 
Zu den Videos zu MathProf 5.0
 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche können Sie eine kostenlose Demoversion des Programms MathProf 5.0 herunterladen.

Zum Download der Demoversion von MathProf 5.0
 

Themen und Stichworte zu diesem Modul:

Fast Fourier - FFT - Fourier Analyse - Fast Fourier Transformation - Fourier Transformation - Formel - Funktion - Gleichung - Definition - Graph - Rechner - Berechnen - Darstellen - Zeichnen - Plotten - Sinus - Cosinus - Sin - Cos - Frequenz - Intensität - Fourierzerlegung - Fourierspektrum - Frequenzspektrum - Fenster - Signal - Schwingungsüberlagerung - Diagramm - Beispiel - Grafisch - Grafik - Amplitude - Animation - Simulation - Dreieck - Rechteck - Rechteckfunktion - Eigenschaften - Koeffizienten - Signal - Simulation - Spektrum - Schwingung - Tabelle - Bild

 
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zum Inhaltsverzeichnis der in MathProf 5.0 implementierten Module bzw. zur Bestellseite für das Programm.
 
Zum Inhaltsverzeichnis von MathProf 5.0 MathProf 5.0 bestellen
 

Fourier-Analyse (FFT)

 

MathProf - Fast Fourier - FFT - Fourier Analyse - Fast Fourier Transformation - Fourier Transformation - Formel - Funktion - Gleichung - Definition - Graph - Rechner
Modul Fourier-Analyse (FFT)



Das Unterprogramm [Analysis] - [Reihen und Synthese] - Fourier-Analyse ermöglicht die Durchführung von Fourier-Analysen mit vorhandenen Messdaten, wie auch eine Untersuchung hierbei relevanter Sachverhalte.

 

MathProf - Fast Fourier - FFT - Fourier Analyse - Berechnen - Darstellen - Zeichnen - Plotten - Sinus - Cosinus - Sin - Cos - Frequenz - Intensität - Rechner


Eine Fourier-Analyse ermöglicht die Zerlegung eines beliebigen periodischen Signals in eine Summe von Sinus- und Cosinusfunktionen (eine Fourier-Reihe) deren Frequenzen in einem ganzzahligen Verhältnis zueinander stehen. Sie wird u.a. anderem eingesetzt, um zeitabhängige Vorgänge in harmonische Einzelschwingungen zu zerlegen.
 
Unter Berücksichtigung, dass Schwingungen mit einem Rauschen überlagert sein können, gilt es mit Hilfe einer Fourier-Analyse die Parameter ai, sowie die Koeffizienten bi einer Funktion folgender Form zu ermitteln:

Funktion - Fast Fourier - FFT

Eine Methode die dies ermöglicht wird als Fast Fourier Transformation (FFT) bezeichnet. Dieses Unterprogramm verwendet sie, um die Analyse der Überlagerung dreier verschiedener Schwingungen, unter Einfluss eines Zufallsparameters Rauschen, durchführen zu können.
 

Prinzip
 
Das Prinzip der Anwendung einer Fourier-Analyse können Sie sich veranschaulichen, wenn Sie den Kontrollschalter Parameteranalyse aktivieren.
 
Durch die Bedienung der Rollbalken Frequenz 1, Frequenz 2 und Frequenz 3 können die Frequenzen einzelner Schwingungen festgelegt werden, mit Hilfe der Rollbalken Intensität 1, Intensität 2 und Intensität 3 die Intensität dieser. Durch die Positionierung des Rollbalkens Rauschen kann die Gewichtung einer auftretenden Störgröße Rauschen eingestellt werden.
 
Um Zusammenhänge mit Hilfe von Simulationen zu analysieren, bedienen Sie die Schaltfläche Simulation. Vor dem Start einer Simulation wird Ihnen ein Formular zur Verfügung gestellt, auf welchem Sie die zu simulierende Größe durch eine Aktivierung des entsprechenden Kontrollschalters festlegen. Bestätigen Sie mit Ok. Beendet werden kann die Ausführung einer derartigen Simulation wieder durch eine erneute Betätigung dieser Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
 
Messwertanalyse

In diesem Programmteil besteht auch die Möglichkeit eine Analyse mit vorhandenen Messwerten durchführen zu lassen. Um dies zu veranlassen, sollten Sie wie nachfolgend geschildert vorgehen:
 
  1. Aktivieren Sie den Kontrollschalter Analyse mit Messwerten.
     
  2. Geben Sie einen Wert in das dafür vorgesehene Feld ein und bedienen Sie die Schaltfläche Übernehmen.
     
  3. Wiederholen Sie diesen Vorgang bis alle zur Auswertung erforderlichen Messwerte aufgenommen sind.
     
  4. Bedienen Sie die Schaltfläche Darstellen.
Möchten Sie einen Eintrag in der Tabelle löschen, so fokussieren Sie diesen und bedienen die Schaltfläche Löschen. Soll ein bereits eingetragener Wert geändert werden, so fokussieren Sie zunächst den entsprechenden Eintrag in der Tabelle, geben den neuen Wert in das dafür vorgesehene Feld ein und bedienen hierauf die Schaltfläche Ersetzen. Um alle Einträge zu löschen, kann die Schaltfläche Alle löschen benutzt werden.
 
Beachten Sie:
Die Anzahl auszuwertender Messergebnisse muss 2n betragen (z.B. 64, 128, 256, 512 ...)!
 
Datenverwaltung
 
Möchten Sie eingegebene Messdaten speichern, so kann dies über den Menüeintrag Datei - Speichern vorgenommen werden. Um mit bereits gespeicherten Daten eine Analyse durchzuführen, verwenden Sie den Menüeintrag Datei - Öffnen. Beim Öffnen einer Datei werden bereits eingegebene Werte durch die Dateidaten überschrieben!
 
Es besteht auch die Möglichkeit die auszuwertenden Daten in einer Excel-Tabelle zu definieren. Die Zahlenwerte sind nach folgendem Schema in der Excel-Tabelle festzulegen: In Spalte A der Excel-Tabelle legen Sie die Messwerte fest. Beginnen Sie mit der Eingabe im obersten Feld dieser Spalte.
 
Speichern Sie diese Tabelle hierauf in einer Datei ab.
 
Sollen diese Daten wieder geladen werden, so wählen Sie im Programm den Menüeintrag Datei - Excel-Daten importieren und öffnen Sie die entsprechende Datei. Eingelesen werden alle Werte bis zum ersten leeren Feld der Excel-Tabellen-Spalte.
 
Beachten Sie, dass die Anzahl auszuwertender Messergebnisse 2n betragen muss (z.B. 64, 128, 256, 512 ...)!
 
Darstellung
 
Im obig angeordneten Diagramm (Zu analysiendes Signal) wird die Darstellung der zu analysierenden Schwingungsüberlagerung ausgegeben. Aus dem unteren Schaubild (Frequenzspektrum) kann das Resultat der Analyse entnommen werden. Die Anzahl hierin dargestellter Spitzen hängt von der Anzahl eingestellter Frequenzen ab, deren Intensität größer 0 ist. Die Position dieser Spitzen gibt Auskunft über die Frequenz der entsprechenden Schwingung, deren Elongation über die Intensität dieser Schwingung.
 
Um die Darstellung der Diagramme anzupassen, bestehen folgende Möglichkeiten:
 
Wählen Sie zunächst, bei welchem Diagramm Änderungen vollzogen werden sollen. Tun Sie dies, indem Sie einen der entsprechenden Kontrollschalter mit den Bezeichnungen Nur Signal, Nur Frequenzspektrum oder Beide Diagramme aktivieren. Legen Sie durch die Aktivierung eines der Kontrollkästchen X-Achse bzw. Y-Achse fest, ob Sie den Darstellungsbereich für die X-Achse(n), oder die Y-Achse(n) des entsprechenden Diagramms verändern möchten.
 
Bedienen Sie hierauf die entsprechenden Schalter mit den Lupensymbolen, um eine Vergrößerung, Verkleinerung der entsprechenden Bereiche zu veranlassen. Die Fokussierung des mittig angeordneten Schalters mit Lupensymbol versetzt die Darstellung wieder in den Urzustand.
 
Optionen
 
Um die mögliche Verzerrung eines Fourier-Spektrums zu minimieren, können verschiedene Fensterfunktionen verwendet werden. Es stehen zur Verfügung:
 
Rechteck-Fenster f(x) = 1 für |x| £ N
f(x) = 0 für |x| > N
Dreieck-Fenster f(x) = 1 - |x|/N für |x| £ N
f(x) = 0 für |x| > N
Cos²-Fenster f(x) = cos2(x/N)
Gauß-Fenster f(x) = e^(-(ax/N)2)
Hamming-Fenster f(x) = 0.54 + 0.46*cos(x/N)
Blackman-Harris-Fenster f(x) = 0.359 + 0.488*cos(x/N) + 0.141*cos(2x/N) + 0.012*cos(2x/N)
Blackman-Nuttall-Fenster f(x) = 0.364 + 0.489*cos(x/N) + 0.137*cos(2x/N) + 0.011*cos(2x/N)
 
Diese können durch eine Aktivierung des entsprechenden Menüeintrags unter Fensterart ausgewählt werden.
Das Spektrum einer Fourierzerlegung (Fourierspektrum) stellt die Amplituden der Fourierkomponenten, ihren Frequenzen zugeordnet dar. Durch die Aktivierung eines Menüeintrags unter Spektrum kann hierdurch eine Auswahl getroffen werden aus:
 
  • Betragsspektrum
  • Powerspektrum (Exponential)
  • Phasenwinkel
  • Cosinusterme
  • Sinusterme
  • Realteil des komplexen Spektrums
  • Imaginärteil des komplexen Spektrums
Näheres siehe Fachliteratur.
 
Weitere Screenshots zu diesem Modul
 

MathProf - Fast Fourier - FFT - Fourier Analyse - Fourierzerlegung - Fourierspektrum - Frequenzspektrum - Fenster - Signal - Schwingungsüberlagerung - Diagramm - Rechner
Beispiel 1
 

MathProf - Fast Fourier - FFT - Fourier Analyse - Rechteckfunktion - Eigenschaften - Koeffizienten - Signal - Simulation - Spektrum - Schwingung - Tabelle - Bild - Rechner - Beispiel - Grafisch - Grafik - Amplitude - Definition - Animation - Simulation
Beispiel 2
 

Weitere Themenbereiche

 
Fourier-Summen
Fourier-Reihen
 

Video

 

Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.

 Weitere Videos zu einigen in MathProf implementierten Modulen sind auf Youtube unter den folgenden Adressen abrufbar:

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im RaumStrecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-AchseRotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum IIAnalyse impliziter Funktionen im Raum - Flächen in Parameterform IFlächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten IFlächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in ZylinderkoordinatenRaumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im RaumKugel und Gerade - Kugel - Ebene - PunktRaumgittermodelle
      
Screenshots und Kurzbeschreibungen einiger Module zu entsprechenden Themenbereichen

Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
   
Nützliche Infos zu diesem Themengebiet

 

Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Fourier-Analyse zu finden.

 
Weitere implementierte Module zum Themenbereich Analysis


MathProf - Taylor Reihen - Taylorreihe - Potenzreihen - Taylor - Reihe - Taylorreihenentwicklung - Potenzreihenentwicklung - Potenzreihendarstellung - Potenzreihe - Taylorsche Reihe - Taylorreihen - Taylorpolynome - Taylorpolynom 2. Grades - Taylorpolynom 3. Grades - Taylorpolynom 4. Grades - Taylorsches Näherungspolynom - Taylor-Approximation - Taylor series - Taylorreihe entwickeln - Potenzreihe entwickeln - Berechnen - Rechner - ZeichnenMathProf - Reihen - Taylor - Taylor-Polynom - Taylorformel - Taylorsche Formel - Berechnen - Entwicklungsstelle - Koeffizienten - Entwicklungspunkt - Taylor-Formel - Taylorpolynom zweiten Grades - Reihenentwicklung - Funktionenreihe - Funktionenreihen - Taylorreihe bestimmen - Taylor-Näherung - Taylorentwickung - Rechner - Zeichnen
 

Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Segmentweise definierte Funktionen - Kurvenscharen - Funktionsparameteranalyse - Funktionswertetabellen - Iteration - Parameter der Sinus- und Cosinusfunktion - Parameter der Logarithmusfunktion - Parameter der Betragsfunktion - Parameter der Quadratwurzelfunktion - Parameter der Potenzfunktion - Parameter der Exponentialfunktion - Kubische Funktion in allgemeiner Form - Kubische Funktion in spezieller Form - Zahlenfolgen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Rekursive Zahlenfolgen - Interaktiv - Arithmetische und geometrische Zahlenfolgen - Parabelgleichungen - Parabelgleichungen - Interaktiv - Parabel und Gerade - Interaktiv - Analyse quadratischer Funktionen - Ermittlung ganzrationaler Funktionen - Ganzrationale Funktionen (Polynome) - Ganzrationale Funktionen (Polynome) - Interaktiv - Gebrochenrationale Funktionen - Gebrochenrationale Funktionen - Interaktiv - Interpolation nach Newton und Lagrange - Interpolation ganzrationaler Funktionen - Polynomregression - Nullstellen - Iterationsverfahren - Horner-Schema - Tangente - Normale - Tangente - Sekante - Tangente und Normale von externem Punkt - Kurvendiskussion - Kurvendiskussion - Interaktiv - Obersummen und Untersummen - Obersummen und Untersummen - Interaktiv - Integrationsmethoden - Rotationsparaboloid (3D) - Integralrechnung - Integralrechnung - Interaktiv - Zykloide - Hypozykloide - Epizykloide - Sternkurven - Zissoide - Strophoide - Kartesisches Blatt - Semikubische Parabel - Archimedische Spirale - Logarithmische Spirale - Fourier-Summen - Fourier-Reihen - Taylorreihen und Potenzreihen - Implizite Funktionen  - Geometrische Lösung quadratischer Gleichungen - Ermittlung ganzrationaler Funktionen - Interaktiv - Interpolation nach Newton - Interaktiv - Interpolation nach Lagrange - Interaktiv - Polynomregression - Interaktiv - Nullstellen - Iterationsverfahren - Interaktiv - Tangente - Normale - Interaktiv - Tangente - Sekante - Interaktiv - Tangente und Normale von externem Punkt - Interaktiv - Simpson-Regel - Keplersche Fassregel - Spline-Interpolation - Spline-Interpolation - Interaktiv - Bézier-Kurven - Astroide - Kardioide - Konstruktion einer Kardioide - Konstruktion einer Hypozykloide - Konchoide - Lemniskate - Cassinische Kurven - Pascalsche Schnecke - Trisektrix - Zweiblatt-Kurve - Konstruktion krummliniger Kurven - Logarithmische Spirale - Konstruktion - Hyperbolische Spirale - Taylor- und Potenzreihen - Interaktiv - Harmonische Synthese - Analyse implizit definierter Gleichungen - Höhenlinien - Konturen von Flächen in expliziter Form - Variante I - Höhenlinien - Konturen von Flächen in expliziter Form - Variante II - Schnittkurven von Flächen in expliziter Form - Zahlenfolgen - Interaktiv II - Rekursive Zahlenfolgen - Interaktiv II - Arithmetische Zahlenfolgen - Interaktiv - Geometrische Zahlenfolgen - Interaktiv - Funktionen in Parameterform - Polarkoordinaten - Funktionen in Polarform - Variante - Tangente - Normale mit Funktionen in Parameterform - Tangente - Normale mit Funktionen in Polarform - Segmentweise definierte Funktionen - Interaktiv - Inverse von Funktionen - Gemeinsame Darstellung von Kurven verschiedener Darstellungsformen - Ermittlung von Funktionsparametern - Funktionsschnittpunkte - Interaktiv - Kettenlinie - Funktionsstetigkeit
 

Screenshots weiterer Module von MathProf


 MathProf - Iterationen - Iterieren - Grenzwert - Schritte - Iteration - Iterationsschleifen - Iterativ - Berechnung - Tabelle - Konvergenz - Grenze - Limit - Abbruch - Parameter - Parameter - Numerisch - Rechner - Berechnen - Funktion
MathProf 5.0 - Unterprogramm Iterationen



MathProf - Parameterkurven - Parametergleichungen - Parameterdarstellung - Funktionen - Parametrisierte Kurven - Kurven - Grafisch - Graph - Darstellen - Plotter - Grafik - Animationen - Simulation - Rechner - Berechnen - Funktionsgraph - 2D - Plotten - Zeichnen - Kurvenplotter - Bild
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
 

Screenshot eines Moduls von PhysProf
 

PhysProf - Adiabatische Zustandsänderung - Adiabatischer Prozess - Adiabatischer Vorgang - Adiabatische Expansion - Adiabatische Kompression - Zustandsänderungen - Adiabatengleichung - Adiabatenexponent - Thermische Zustandsgleichung -  Volumen - Druck - Temperatur - Diagramm - Adiabatische Arbeit - Expansion - Kompression - Rechner - Berechnen - Gleichung - Simulation - Darstellen - Garfisch - Grafik
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
 

Screenshot einer mit SimPlot erstellten Animationsgrafik


SimPlot - Animationen - Präsentationen - Grafiken - Schaubilder - Visualisierung - Programm - Interaktive Grafik - Bilder - Computeranimationen - Infografik - Software - Plotter - Rechner - Computersimulation - Darstellen - Technisch - Datenvisualisierung - Animationsprogramm - Wissenschaft - Technik
SimPlot 1.0 - Grafik-  und Animationsprogramm für unterschiedlichste Anwendungszwecke

 
Unsere Produkte
 
Nachfolgend aufgeführt finden Sie Kurzinfos zu den von uns entwickelten Produkten.
 
I - MathProf 5.0
Mathematik interaktiv
 
MathProf 5.0 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich mathematische Sachverhalte auf einfache Weise zu verdeutlichen. Zudem spricht es diejenigen an, die sich für Mathematik interessieren, oder mathematische Probleme verschiedenster Art zu lösen haben und von grafischen 2D- und 3D-Echtzeitdarstellungen sowie Animationen beeindruckt sind.
 

Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Vektoralgebra - Geometrie
 

Es eignet sich insbesondere dafür, um interaktive grafische Untersuchungen sowie numerische Berechnungen zu entsprechenden Fachthemen durchführen zu lassen. Mehr als 300 verschiedene Unterprogramme decken die mathematischen Themenbereiche Analysis, Geometrie, Trigonometrie, Algebra, Stochastik, 3D-Mathematik und Vektoralgebra großflächig ab.


Bilder zum Programm MathProf 5.0 - Analysis - Trigonometrie - Algebra - 3D-Mathematik - Stochastik - Vektoralgebra - 

Numerisch - Grafisch - Plotten - Graph


Durch die Nutzbarkeit vieler implementierter grafischer Features bestehen vielseitige gestaltungstechnische Möglichkeiten, ausgegebene Grafiken in entsprechenden Unterprogrammen auf individuelle Anforderungen anzupassen. Durch die freie Veränderbarkeit von Parametern und Koordinatenwerten bei der Ausgabe grafischer Darstellungen, besteht in vielen Modulen zudem die Möglichkeit, Veränderungen an dargestellten Gebilden und Zusammenhängen manuell oder durch die Verwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 1600 Seiten.

 
Kurzinfos zu Inhalten einiger Unterprogramme erhalten Sie unter:
 

 

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich 3D-Mathematik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Analysis eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einem in MathProf 5.0 unter dem Themenbereich Vektoralgebra eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Weitere Videos zu einigen in MathProf implementierten Modulen finden Sie, indem Sie den Reiter MathProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu MathProf 

5.0
 
 
 
 
II - PhysProf 1.1
Physik interaktiv

 
PhysProf 1.1 ist ein Programm für alle, die die Aufgabe oder das Ziel haben, sich physikalische Gesetzmäßigkeiten und Gegebenheiten zu verdeutlichen. Es spricht alle an, die sich für die Ergründung physikalischer Prozessabläufe und derartige Zusammenhänge interessieren. In zahlreichen Unterprogrammen besteht die Möglichkeit, Veränderungen von Einflussgrößen manuell, oder durch die Ausgabe automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren. Inhaltlich umfasst es ca. 70 verschiedene Unterprogramme zu den Fachthemenbereichen Mechanik, Elektrotechnik, Thermodynamik und Optik.
 

Bilder zum Programm PhysProf 1.1 - Mechanik - Elektrotechnik - Thermodynamik - Optik
 

Durch die Benutzung dieses Programms wird es ermöglicht, bereits bekannte Fachthemeninhalte aufzuarbeiten und entsprechende Sachverhalte numerisch wie auch grafisch zu analysieren. Mittels der freien Veränderbarkeit der Parameter von Einflussgrößen bei der Ausgabe grafischer Darstellungen besteht in vielen Unterprogrammen die Möglichkeit, Veränderungen an dargestellten Zusammenhängen manuell oder durch die Anwendung automatisch ablaufender Simulationsprozesse in Echtzeit zu steuern und zu analysieren.

Es verfügt über eine umfangreiche Programmhilfe mit ca. 300 Seiten.

 
Eine Übersicht aller in PhysProf 1.1 zur Verfügung stehender Programmteile finden Sie im PhysProf - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum Inhaltsverzeichnis von PhysProf 1.1
 
Kurzinfos zu Inhalten einiger Unterprogramme von Physprof 1.1 erhalten Sie unter:
 

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Mechanik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Thermodynamik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einem in PhysProf 1.1 unter dem Themenbereich Elektrotechnik eingebundenen Unterprogramm, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen in PhysProf implementierten Modulen finden Sie, indem Sie den Reiter PhysProf-Videos wählen, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu PhysProf 1.1
 

 
 


 
III - SimPlot 1.0
Visualisierung und Simulation interaktiv
 

SimPlot 1.0 ist eine Anwendung, welche es unter anderem durch interaktiv erstellbare Präsentationen ermöglicht, sich Sachverhalte aus vielen technischen, wissenschaftlichen und anderen Bereichen grafisch darstellen und diese multifunktional sowohl statisch, wie auch in Form bewegter Grafiken ausgeben zu lassen. Das Programm erlaubt die Erstellung von Gebilden mit zweidimensionalen grafischen Objekten, welche als geometrische Figuren und Bilder zur Verfügung stehen.

Es bietet zudem die Möglichkeit, Zusammenhänge im Bereich der Planimetrie auf einfache Weise interaktiv zu analysieren. Unter anderem wird es ermöglicht, mit erzeugten Gebilden geometrische Transformationen durchzuführen und diesen automatisch ablaufende Bewegungs- und Verformungsprozesse zuzuweisen.

 
Bilder zum Programm SimPlot 1.0 - Zweidimensionale Grafiken, Simulationen und 

Animationen für unterschiedlichste Anwendungsbereiche

 
SimPlot kann sowohl zur Erstellung von Infografiken, zur dynamischen Datenvisualisierung, zur Auswertung technisch-wissenschaftlicher Zusammenhänge sowie zur Erzeugung bewegter Bilder für verschiedenste Anwendungsbereiche eingesetzt werden. Neben der Bereitstellung vieler mathematischer Hilfsmittel und zusätzlicher Unterprogramme erlaubt es auch die Einblendung von Hilfslinien zur Echtzeit, welche dienlich sind, um sich relevante Sachverhalte und Zusammenhänge unmittelbar begreiflich zu machen.

Dieses Programm verfügt über eine umfangreiche Programmhilfe mit ca. 900 Seiten.
 
Eine Inhaltsübersicht dessen finden Sie unter SimPlot - Inhaltsverzeichnis, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zum 

Inhaltsverzeichnis von SimPlot 1.0
 
Beispiele einiger mit Simplot 1.0 erzeugter Grafiken finden Sie unter Beispiele, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.

Zu Beispielen von SimPlot 1.0

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.

Weitere Videos zu einigen mit SimPlot erzeugten Animationen finden Sie unter SimPlot-Videos, oder durch einen Klick auf die nachfolgend dargestellte Schaltfläche.
 
Zu den Videos zu SimPlot 1.0