MathProf - Darstellung - Zusätzlich - Kurven - Plotten - Funktion
Thema: Darstellung zusätzlicher Kurven bei der Ausgabe zweidimensionaler Grafiken
MathProf - Ein Programm zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für die Schule, das Abitur, das Studium sowie für Lehrer, Ingenieure, Wissenschaftler und alle die sich für Mathematik interessieren.
Online-Hilfe zum Thema
Darstellung zusätzlicher Kurven bei Ausgabe zweidimensionaler Grafiken.
MathProf ermöglicht das Plotten der Kurven von Funktionen verschiedener Arten bei der Ausgabe grafischer 2D-Darstellungen. Hierzu zählen Kurven von Funktionen in expliziter Form, Kurven von Funktionen in Polarform sowie Kurven von Funktionen in Parameterform.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Darstellung zusätzlicher Kurven - Plotten von zusätzlichen Kurven
In zahlreichen Unterprogrammen ermöglicht das Programm bei der Ausgabe zweidimensionaler Grafiken die zusätzliche Darstellung mathematischer Kurven. Ist es erforderlich sich zusätzlich eine Kurve ausgeben zu lassen, so wählen Sie bei Bedarf hierzu einen der nachfolgend aufgeführten Menüpunkte:
-
Datei - Kurve darstellen - in expliziter Form
-
Datei - Kurve darstellen - in Parameterform
-
Datei - Kurve darstellen - in Polarform
Nach Auswahl des entsprechenden Eintrags wird eines der nachfolgend gezeigten Formulare zur Definition der entsprechenden Funktion(en) zur Verfügung gestellt.
Hinweis:
In einigen Unterprogrammen, welche bereits die Darstellung funktionaler Zusammenhänge in ihren Hauptfenstern behandeln, stehen diese Menüpunkte nicht zur Verfügung.
Eingabeformular zur Definition einer Funktion in expliziter Form
Führen Sie Folgendes durch, um sich zusätzlich die Kurve einer Funktion in expliziter Form ausgeben zu lassen:
-
Definieren Sie den Term der darzustellenden Kurve, gemäß den geltenden Syntaxregeln, im dafür vorgesehenen Eingabefeld mit der Bezeichnung f(x,p) =.
-
Bedienen Sie die Schaltfläche Ok.
Hinweis:
Wurden in diesem oder in anderen Unterprogrammen bereits Funktionen in expliziter Form gespeichert, so stehen diese in der Auswahlliste, oberhalb des Eingabefelds zur Verfügung. Durch den Klick auf einen Listeneintrag wird der gewählte Term in das entsprechende Eingabefeld übernommen.
Eingabeformular zur Definition von Kurven in Parameterform
Bei der Darstellung von Kurven in Parameterform werden die Koordinaten der Kurvenpunkte durch zwei Gleichungen ermittelt. Die Werte (Koordinaten) für x und y hängen von einem reellwertigen Parameter k ab, welcher einen definierbaren Wertebereich durchläuft. Das Symbol, welches diesen Parameter beschreibt, ist in diesem Programm auf K festgelegt. Funktionen dieser Art müssen (bei Verwendung dieses Parameters) bei deren Definition deshalb stets das Zeichen K enthalten.
In Fachliteratur übliche Bezeichnung | Bezeichnung in MathProf |
x = f(t) y = g(t) | x = f(k) y = g(k) |
Führen Sie Folgendes durch, um sich zusätzlich Kurven von Funktionen in Parameterform darstellen zu lassen:
-
Definieren Sie die Funktionsterme, gemäß den geltenden Syntaxregeln, in den zur Verfügung stehenden Eingabefeldern mit den Bezeichnungen x = f(k,p) sowie y = g(k,p).
-
Legen Sie durch die Eingabe entsprechender Werte den Parameterwertebereich für den Funktionsparameter K (Von k1 = und bis k2 =) fest, über welchen die Kurve der Funktionen auszugeben ist (voreingestellt: -π ≤ k ≤ π). Standardwerte hierfür können Sie holen, indem Sie das entsprechende Eingabefeld fokussieren und die rechte Maustaste bedienen.
-
Legen Sie durch die Wahl des Kontrollschalters Grob, Mittel, Fein oder Sehr fein fest, mit welcher Auflösung die Darstellung der Kurve erfolgen soll (voreingestellt: mittel).
Hinweis:
Wurden in diesem oder in anderen Unterprogrammen bereits Funktionsterme in Parameterform gespeichert, so stehen diese in der Auswahlliste, oberhalb des Eingabefelds zur Verfügung. Durch den Klick auf einen Listeneintrag werden die gewählten Terme in das entsprechende Eingabefeld übernommen.
Eingabeformular zur Definition einer Kurve in Polarform
Ein Polarkoordinatensystem ist ein krummliniges Koordinatensystem. Die Koordinatenlinien, bei welchen die Koordinaten aus konzentrischen Kreisen um den Koordinatenursprung (Pol) und Strahlen, die vom Pol aus radial nach außen verlaufen, bestehen, beschreiben dies. Die Polarkoordinaten eines Punktes (in der Ebene) bestehen aus der Abstandskoordinate r und der Winkelkoordinate φ.
In der Fachliteratur wird für die Deklaration von Funktionen dieser Art üblicherweise die Bezeichnung φ = f(r) geführt. In diesem Programm wird hierfür die Bezeichnung w = f(r) verwendet. Somit ist zur Definition von Funktionstermen dieser Art das Zeichen R zu verwenden.
In Fachliteratur übliche Bezeichnung | Bezeichnung in MathProf |
φ = f(r) | w = f(r) |
Führen Sie Folgendes durch, um sich zusätzlich die Kurve einer Funktion in Polarform darstellen zu lassen:
-
Definieren Sie den Funktionsterm,gemäß den geltenden Syntaxregeln, im zur Verfügung stehenden Eingabefeld mit der Bezeichnung r = f(w,p).
-
Legen Sie durch die Eingabe entsprechender Werte den Wertebereich für Winkel w (Von w1 = und bis w2 =) fest, über welchen die Funktion auszugeben ist (voreingestellt: -π ≤ w ≤ π). Standardwerte hierfür können Sie holen, indem Sie das entsprechende Eingabefeld fokussieren und die rechte Maustaste bedienen.
-
Legen Sie durch die Wahl des Kontrollschalters Grob, Mittel, Fein oder Sehr fein fest, mit welcher Auflösung die Darstellung der Kurve erfolgen soll (voreingestellt: mittel).
-
Bedienen Sie die Schaltfläche Ok.
Hinweis:
Wurden in diesem oder in anderen Unterprogrammen bereits Funktionen in Polarform gespeichert, so stehen diese in der Auswahlliste, oberhalb des Eingabefelds zur Verfügung. Durch den Klick auf einen Listeneintrag wird der gewählte Term in das entsprechende Eingabefeld übernommen.
Funktionen des Bedienformulars
Nach Durchführung einer korrekten Funktionsdefinition wird eines der nachfolgend gezeigten Bedienformulare eingeblendet.
Bedienformular bei Darstellung einer zusätzlichen Kurve ohne Funktionsparameter P
Bedienformular bei Darstellung einer zusätzlichen Kurve mit Funktionsparameter P
Im Folgenden wird auf die Funktionalitäten der auf dem oben gezeigten Bedienformular vorhandenen Steuerelemente eingegangen.
-
Zur Hervorhebung der Kurve aktivieren Sie das Kontrollkästchen Fett. Farbwerte weisen Sie ihr zu, indem Sie die Schaltfläche Farbe bedienen. Durch eine Aktivierung des Kontrollkästchens Text legen Sie fest, ob der / die Funktionsterm(e) der dargestellten Kurve ausgegeben werden soll. Die Aktivierung des Kontrollkästchens Vorne bewirkt, dass die Kurve im Vordergrund dargestellt wird.
-
Soll die Ausgabe der Kurve im entsprechenden Unterprogramm beendet werden, so bedienen Sie die Schaltfläche Löschen.
-
Um sich eine andere Kurve ausgeben zu lassen, bedienen Sie die Schaltfläche Fkt. holen und gehen wie zuvor beschrieben vor.
Bei Verwendung einer Funktion mit Funktionsparameter P gilt es Folgendes zu beachten:
-
Möchten Sie die Darstellung einer parameterhaltigen Funktion ausgeben lassen, so muss diese das Einzelzeichen P beinhalten!
Grundsätzliches bezüglich der Nutzung von Funktionsparametern bei der Darstellung mathematischer Funktionen finden Sie unter Verwendung von Funktionsparametern.
-
Um den zu durchlaufenden Wertebereich des Parameters festzulegen und die gewünschte Parameterschrittweite zu definieren, bedienen Sie den Schalter Parameter P.
-
Um eine automatisch ablaufende Parameterwertsimulation durchführen zu lassen, klicken Sie auf die Schaltfläche Simulation. Beendet werden kann die Ausführung dieser wieder durch eine erneute Betätigung derselben Schaltfläche. Sie trägt nun die Bezeichnung Sim. Stop.
Aus- und Einblenden des Bedienformulars
Viele Unterprogramme stellen bei der Ausgabe grafischer Darstellungen Bedienformulare zur Verfügung. Diese werden nach Aufruf eines der oben beschriebenen Befehle zur zusätzlichen Darstellung einer mathematischen Kurve ausgeblendet.
Um sich ein ausgeblendetes Bedienformular wieder einblenden zu lassen, klicken Sie auf die Schaltfläche Ausblenden auf dem aktiven Bedienformular für Kurvendarstellung (siehe obige Abb.). Hierauf wird in der Bedienleiste des Fensters zur Ausgabe zweidimensionaler Grafiken eine Symbolschaltfläche aktiviert (siehe nachf. Abb.).
Wird diese angeklickt, so erscheint das nachfolgend gezeigte Auswahlformular, auf welchem Sie durch die Aktivierung des entsprechenden Kontrollschalters bestimmen können, welches der beiden Bedienformulare wieder einzublenden ist.
Die zur Verfügung stehenden Kontrollschalter tragen die Bezeichnungen Funktionsbedienformular und Kurvendarstellungsformular. Nach einer Bestätigung mit Ok wird das entsprechende Bedienformular wieder eingeblendet.
Problem:
Weder das Standardbedienformular noch das Kurvendarstellungsformular stehen zur Verfügung und die oben beschriebene Symbolschaltfläche ist nicht aktiviert.
Lösung:
Wählen Sie in diesem Fall den Menüpunkt Datei - Kurve darstellen erneut und klicken Sie auf die dortige Schaltfläche Ok oder Abbrechen. Hierauf wird das Bedienformular zur Ausgabe von Kurven wieder angezeigt und das Handling dieser beiden Fenster kann wieder wie zuvor beschrieben vollzogen werden.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.