MathProf - Acht - Damen - Problem - Damenproblem - Lösung
Fachthema: Acht-Damen-Problem
MathProf - Software für interaktive Mathematik zum Lösen verschiedenster Aufgaben und zur Visualisierung relevanter Sachverhalte mittels Simulationen, 2D- und 3D-Animationen für Studenten, Lehrer und Ingenieure sowie für alle die sich für Mathematik interessieren.
Online-Hilfe
für das Modul zur Praktizierung des sogenannten Damenproblems (Acht-Damen-Problems) mit unterschiedlichen Spielfeldgrößen.
Weitere relevante Seiten zu diesem Programm
Durch die Ausführung eines Klicks auf die nachfolgend gezeigte Schaltfläche gelangen Sie zur Startseite dieser Homepage.
Themen und Stichworte zu diesem Modul:Acht-Damen-Problem - 8-Damen-Problem - Damenproblem - Lösung - Lösungen - N Damen-Problem |
Acht-Damen-Problem
Modul Acht-Damen-Problem
Das kleine Unterprogramm [Sonstiges] - [Sonstiges] - Acht-Damen-Problem behandelt die schach-mathematische Aufgabe Acht-Damen-Problem.
Beim Damenproblem (auch als Acht-Damen-Problem oder 8-Damen-Problem bezeichnet) sollen jeweils acht Damen auf einem Schachbrett so aufgestellt werden, dass keine zwei Damen einander nach den Schachregeln schlagen können. Die Figurenfarbe wird dabei ignoriert, und es wird angenommen, dass jede Figur jede andere angreifen könnte. Oder anders ausgedrückt: Es sollen sich keine zwei Damen die gleiche Reihe, Linie oder Diagonale teilen. Im Mittelpunkt steht die Frage nach der Anzahl der möglichen Lösungen.
Das Problem kann auf Schachbretter beliebiger Größe verallgemeinert werden. Dann gilt es, n nicht-dominierende Damen auf einem Brett von n x n Feldern zu positionieren. Für n = 8 hat das Damenproblem 92 verschiedene Lösungen (mögliche Stellungen). Betrachtet man Lösungen als gleich, die sich durch Spiegelung oder Drehung des Brettes auseinander ergeben, verbleiben noch zwölf Lösungen (echte Stellungen).
Erstmals formuliert wurde das Damenproblem von dem bayerischen Schachmeister Max Bezzel. In der Berliner Schachzeitung fragte er 1848 nach der Anzahl der möglichen Lösungen. Als erster nannte 1850 Franz Nauck in der Leipziger Illustrirten Zeitung die korrekte Zahl 92. 1874 bewies der englische Mathematiker James Whitbread Lee Glaisher, dass es nicht mehr Lösungen geben kann.
Dieses Unterprogramm ermöglicht die Darstellung der Kombinationen mit den Spielfeldgrößen von 4 x 4 bis zu 15 x 15. Es werden sowohl die Kombinationen aller möglichen Stellungen (mit Spiegelung oder Drehung), wie auch die Kombinationen nur echter Stellungen ausgegeben. Die Anzahl möglicher Stellungen und echter Stellungen wird unterhalb der rechtsseitig angeordneten Tabelllen angezeigt.
Führen Sie Folgendes aus, um Analysen mit diesem Unterprogramm durchzuführen:
- Legen Sie durch die Bedienung des Steuerelements Anzahl der Damen die Größe des Spielfelds fest.
- Bedienen Sie hierauf die Schaltfläche Berechnen, so gibt das Programm die Liste aller moglichen Stellungen in der rechts oben angeordneten Tabelle aus. Die darunter angeordnete Tabelle listet die Kombinationen nur echter Stellungen.
- Um sich die ermittelten Kombinationen auf dem Spielfeld anzeigen zu lassen, klicken Sie den entsprechenden Eintrag in einer der Tabellen an.
Mit Hilfe dieses Programms lassen sich unter anderem Grafiken für Arbeitsblätter zur nichtkommerziellen Nutzung für Unterrichtszwecke erstellen. Beachten Sie hierbei jedoch, dass jede Art gewerblicher Nutzung dieser Grafiken und Texte untersagt ist und dass Sie zur Verfielfältigung hiermit erstellter Arbeitsblätter und Unterrichtsmaterialien eine schriftliche Genehmigung des Autors (unseres Unternehmens) benötigen.
Diese kann von einem registrierten Kunden, der im Besitz einer gültigen Softwarelizenz für das entsprechende Programm ist, bei Bedarf unter der ausdrücklichen Schilderung des beabsichtigten Verfielfältigungszwecks sowie der Angabe der Anzahl zu verfielfältigender Exemplare für das entsprechende Arbeitsblatt unter der auf der Impressum-Seite dieses Angebots angegebenen Email-Adresse eingeholt werden. Es gelten unsere AGB.
Dieses Programm eignet sich neben seinem Einsatz als Berechnungs- bzw. Grafikprogramm zudem zum Lernen, zur Aneignung entsprechenden Fachwissens, zum Üben sowie zum Lösen verschiedener Aufgaben zum behandelten Fachthema. Durch seine einfache interaktive Benutzbarbarkeit bietet es die auch Möglichkeit der Durchführung unterschiedlicher Übungen hierzu. Es kann sowohl zur Einführung in das entsprechende Fachthemengebiet, wie auch zur Erweiterung des bereits hierzu erlangten Fachwissens genutzt werden. Des Weiteren eignet es sich beim Üben dazu, um das Erlernte hinsichtlich praktizierter Übungen bzw. bearbeiteter Übungsaufgaben zu überprüfen und hierzu erworbenes Wissen festigen zu können.
Oftmals lassen sich hiermit auch die Lösungen von Übungsaufgaben durch benutzerdefinierte Festlegungen und Eingaben numerisch oder grafisch ermitteln bzw. auswerten. Erlernte Fertigkeiten können somit auf anschauliche Weise untersucht werden. Implementierte Beispiele zu Sachverhalten erlauben die Bezugnahme zum entsprechenden Fachthemengebiet.
Mittels der anschaulichen Gestaltung und einfachen Bedienbarbarkeit einzelner Module dieser Software können Fragen zum entsprechenden Themengebiet, die mit den Worten Was ist?, Was sind?, Wie?, Wieviel?, Was bedeutet?, Weshalb?, Warum? beginnen beantwortet werden.
Bei Fragen deren Wörter Welche?, Welcher?, Welches?, Wodurch? bzw. Wie rechnet man? oder Wie berechnet man? sind,können zugrunde liegende Sachverhalte oftmals einfach erklärt und nachvollzogen werden. Auch liefert diese Applikation zu vielen fachthemenbezogenen Problemen eine Antwort und stellt eine diesbezüglich verständliche Beschreibung bzw. Erklärung bereit.
Nachfolgend finden Sie ein Video zu diesem Fachthema, welches Sie durch die Ausführung eines Klicks
auf die nachfolgend gezeigte Grafik abspielen lassen können.
Mathematische Funktionen I - Mathematische Funktionen II - Funktionen in Parameterform - Funktionen in Polarform - Kurvenscharen - Funktionsparameter - Kubische Funktionen - Zahlenfolgen - Interaktiv - Rekursive Zahlenfolgen - Interaktiv - Quadratische Funktionen - Interaktiv - Parabel und Gerade - Interaktiv - Ganzrationale Funktionen - Interaktiv - Gebrochenrationale Funktionen - Interaktiv - Kurvendiskussion - Interaktiv - Ober- und Untersummen - Interaktiv - Integralrechnung - Interaktiv - Hypozykoide - Sinusfunktion und Cosinusfunktion - Fourier-Reihen - Implizite Funktionen - Zweipunkteform einer Gerade - Kreis und Punkt - Interaktiv - Kegelschnitte in achsparalleler Lage - Interaktiv - Rechtwinkliges Dreieck - Interaktiv - Allgemeines Dreieck - Interaktiv - Höhensatz - Eulersche Gerade - Richtungsfelder von Differentialgleichungen - Addition und Subtraktion komplexer Zahlen - Binomialverteilung - Interaktiv - Galton-Brett - Satz des Pythagoras - Bewegungen in der Ebene - Dreieck im Raum - Würfel im Raum - Torus im Raum - Schiefer Kegel - Pyramide - Pyramidenstumpf - Doppelpyramide - Hexaeder - Dodekaeder - Ikosaeder - Abgestumpftes Tetraeder - Abgestumpftes Ikosidodekaeder - Johnson Polyeder - Punkte im Raum - Strecken im Raum - Rotationskörper - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die X-Achse - Rotationskörper - Parametergleichungen - Rotation um die Y-Achse - Flächen im Raum I - Flächen im Raum II - Analyse impliziter Funktionen im Raum - Flächen in Parameterform I - Flächen in Parameterform II - Flächen mit Funktionen in Kugelkoordinaten I - Flächen mit Funktionen in Kugelkoordinaten II - Flächen mit Funktionen in Zylinderkoordinaten - Raumkurven I - Raumkurven II - Raumkurven III - Quadriken - Ellipsoid - Geraden im Raum I - Geraden im Raum II - Ebene durch 3 Punkte - Ebenen im Raum - Kugel und Gerade - Kugel - Ebene - Punkt - Raumgittermodelle
Eine kleine Übersicht in Form von Bildern und kurzen Beschreibungen über einige zu den einzelnen Fachthemengebieten dieses Programms implementierte Unterprogramme finden Sie unter Screenshots zum Themengebiet Analysis - Screenshots zum Themengebiet Geometrie - Screenshots zum Themengebiet Trigonometrie - Screenshots zum Themengebiet Algebra - Screenshots zum Themengebiet 3D-Mathematik - Screenshots zum Themengebiet Stochastik - Screenshots zum Themengebiet Vektoralgebra sowie unter Screenshots zu sonstigen Themengebieten.
Hilfreiche Informationen zu diesem Fachthema sind unter Wikipedia - Damenproblem zu finden.
Zahlenstrahl - Römische Zahlen - Schriftliche Addition - Schriftliche Subtraktion - Schriftliche Multiplikation - Schriftliche Division - Schriftliche Potenzierung - Aussagenlogik - Zahltypumwandlung - Zinsrechnung - Zinseszinsrechnung grafisch - Annuitätentilgung - Jahreszinsrechnung - Physikalische Größen - Materialkonstanten - Fachbegriffe Deutsch - Englisch - Mandelbrot- und Juliamengen - Zusammenhänge Mandelbrot-Juliamengen - Sierpinski-Dreieck - Koch-Kurve - Feigenbaum-Diagramm - Lindenmayer-System - Lindenmayer-System II - Logistische Gleichung I - Logistische Gleichung II - Diagramme - Tortendiagramm - Kryptografie - Raumgittermodelle (3D) - Paare geordnet - Kalender - Rechnen mit selbstdefinierten Formeln - Zeichenprogramm - Tangram - Tetris - Spiel 15 - Türme von Hanoi - Dame - Schach - Logische Verknüpfungen - Dualzahl - Dezimalzahl - Zinsrechnung - Interaktiv - Tageszinsrechnung - Interaktiv - Zins und Zinseszins - Annuitätentigung - Interaktiv - Rechenschieber - Iterated function systems IFS - Rucksack-Problem - Weltzeiten - Josephus-Problem - Chinesisches Solitaire
MathProf 5.0 - Unterprogramm Feigenbaum-Diagramm
MathProf 5.0 - Unterprogramm Kurven von Funktionen in Parameterform
PhysProf 1.1 - Unterprogramm Adiabatische Zustandsänderung
SimPlot 1.0 - Grafik- und Animationsprogramm für unterschiedlichste Anwendungszwecke
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.
Nachfolgend finden Sie ein Video zu einer mit SimPlot 1.0 erstellten Animationsgrafik, welches Sie durch die Ausführung eines Klicks auf die nachfolgend gezeigte Grafik abspielen lassen können.